fc_op.cc 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * FC converter convert a MUL op in Fluid to a FC layer in TRT.
 */
class FcOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
27
                  const framework::Scope& scope, bool test_mode) override {
28
    VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
Y
Yan Chunwei 已提交
29
    framework::OpDesc op_desc(op, nullptr);
30 31 32 33 34 35 36 37 38

    auto input_names = op_desc.InputNames();
    bool with_bias = input_names.size() >= 3;
    std::string w_name = "Y";
    std::string i_name = "X";
    if (with_bias) {
      w_name = "W";
      i_name = "Input";
    }
39
    // Declare inputs
40
    auto* X = engine_->GetITensor(op_desc.Input(i_name).front());
41
    // Declare weights
42
    auto* Y_v = scope.FindVar(op_desc.Input(w_name).front());
43 44 45
    PADDLE_ENFORCE_NOT_NULL(
        Y_v, platform::errors::NotFound(
                 "Can not find %s presistale var of fc in scope.", w_name));
46
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
P
Pei Yang 已提交
47 48 49 50 51 52 53 54 55 56
    const int x_num_col_dims =
        op_desc.HasAttr("x_num_col_dims")
            ? boost::get<int>(op_desc.GetAttr("x_num_col_dims"))
            : (op_desc.HasAttr("in_num_col_dims")
                   ? boost::get<int>(op_desc.GetAttr("in_num_col_dims"))
                   : 1);
    const std::string activation_type =
        op_desc.HasAttr("activation_type")
            ? boost::get<std::string>(op_desc.GetAttr("activation_type"))
            : "";
57
    // This may trigger a GPU->CPU copy, because TRT's weight can only be
58
    // assigned from CPU memory, which can't be avoided.
59 60 61 62
    float* weight_data = nullptr;
    bool enable_int8 = boost::get<bool>(op_desc.HasAttr("enable_int8"));
    if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
63
      CHECK(op_desc.HasAttr(i_name + "_scale"));
64 65
      float in_scale =
          boost::get<float>(op_desc.GetAttr(i_name + "_scale")) * 127;
66 67 68 69 70 71 72 73 74 75
      auto weight_scale =
          boost::get<std::vector<float>>(op_desc.GetAttr("weight_scale"));
      weight_data = engine_->GetWeightCPUData(op_desc.Input(w_name).front(),
                                              Y_t, true, weight_scale);
      engine_->SetTensorDynamicRange(X, in_scale);
#endif
    } else {
      weight_data =
          engine_->GetWeightCPUData(op_desc.Input(w_name).front(), Y_t, false);
    }
N
nhzlx 已提交
76

77 78 79 80 81
    PADDLE_ENFORCE_EQ(Y_t->dims().size(), 2UL,
                      platform::errors::InvalidArgument(
                          "The fc's weight should be a matrix with 2 dims, but "
                          "it's %d-dimensional.",
                          Y_t->dims().size()));  // a matrix
82
    size_t n_output = Y_t->dims()[1];
N
nhzlx 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    int m = Y_t->dims()[0];
    int n = Y_t->dims()[1];

    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };

    auto regist_fc = [&](nvinfer1::ITensor* inputs, int n_output,
                         TensorRTEngine::Weight& weight,
                         TensorRTEngine::Weight& bias) {
      auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *inputs,
                                            n_output, weight.get(), bias.get());

      auto output_name = op_desc.Output("Out").front();
      if (activation_type == "relu") {
        nvinfer1::IActivationLayer* relu_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Activation, *(fc_layer->getOutput(0)),
                                 nvinfer1::ActivationType::kRELU);
        RreplenishLayerAndOutput(relu_layer, "fc", {output_name}, test_mode);
      } else {
        RreplenishLayerAndOutput(fc_layer, "fc", {output_name}, test_mode);
      }
    };

    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(Y_t->numel());
    memcpy(weight_data_tmp.data(), weight_data, Y_t->numel() * sizeof(float));
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
N
nhzlx 已提交
116

117 118
    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
N
nhzlx 已提交
119
                                  static_cast<size_t>(Y_t->numel())};
120 121
    weight.dims.assign({n, m});

122 123 124 125 126 127 128 129 130 131 132 133
    float* bias_data = nullptr;
    int bias_num = 0;
    if (with_bias) {
      auto* b_v = scope.FindVar(op_desc.Input("Bias").front());
      auto* b_t = b_v->GetMutable<framework::LoDTensor>();
      bias_data =
          engine_->GetWeightCPUData(op_desc.Input("Bias").front(), b_t, false);
      bias_num = b_t->numel();
    }
    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(bias_data),
                                static_cast<size_t>(bias_num)};
134

135
    if (engine_->with_dynamic_shape()) {
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
      // not NCHW layout, but NLP layout with added 'x 1 x 1'
      auto x_dim = X->getDimensions();
      if (x_dim.nbDims == 3 || x_dim.nbDims == 2) {
        auto output_name = op_desc.Output("Out").front();
        // add shuffle before fc
        nvinfer1::Dims reshape_before_fc_dim;
        reshape_before_fc_dim.nbDims = x_dim.nbDims + 2;
        for (int i = 0; i < x_dim.nbDims; i++) {
          reshape_before_fc_dim.d[i] = 0;
        }
        reshape_before_fc_dim.d[x_dim.nbDims] = 1;
        reshape_before_fc_dim.d[x_dim.nbDims + 1] = 1;
        auto* reshape_before_fc_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
        reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
        reshape_before_fc_layer->setName(
            ("shuffle_before_fc(Output: " + output_name + ")").c_str());

        // add fc layer
        auto* fc_layer = TRT_ENGINE_ADD_LAYER(
            engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0),
            n_output, weight.get(), bias.get());
        fc_layer->setName(("fc_layer(Output: " + output_name + ")").c_str());

        // add shuffle after fc
        nvinfer1::Dims reshape_after_fc_dim;
        if (x_dim.nbDims == 3) {
          if (x_num_col_dims == 2) {
            reshape_after_fc_dim.nbDims = 3;
            reshape_after_fc_dim.d[0] = 0;
            reshape_after_fc_dim.d[1] = 0;
            reshape_after_fc_dim.d[2] = 0;
          } else {
            reshape_after_fc_dim.nbDims = 2;
            reshape_after_fc_dim.d[0] = 0;
            auto dim = fc_layer->getOutput(0)->getDimensions();
            reshape_after_fc_dim.d[1] = dim.d[1] * dim.d[2];
          }
          // x_dim.nbDims == 2
        } else {
          reshape_after_fc_dim.nbDims = 2;
          reshape_after_fc_dim.d[0] = 0;
          reshape_after_fc_dim.d[1] = 0;
        }
        auto* reshape_after_fc_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *fc_layer->getOutput(0));
        reshape_after_fc_layer->setReshapeDimensions(reshape_after_fc_dim);

        if (activation_type == "relu") {
          reshape_after_fc_layer->setName(
              ("shuffle_after_fc(Output: " + output_name + ")").c_str());
          nvinfer1::IActivationLayer* relu_layer = TRT_ENGINE_ADD_LAYER(
              engine_, Activation, *(reshape_after_fc_layer->getOutput(0)),
              nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer, "relu_after_fc_shuffle",
                                   {output_name}, test_mode);
        } else {
          RreplenishLayerAndOutput(reshape_after_fc_layer, "shuffle_after_fc",
                                   {output_name}, test_mode);
        }
      } else {
        regist_fc(X, n_output, weight, bias);
      }
199 200
      return;
    }
P
Pei Yang 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    // in order to handle situations in NLP models(input dims < 3,
    // x_num_col_dims != 1, etc.), reshape input to perform FC correctly.
    auto* reshape_itensor = X;
    int input_dims = X->getDimensions().nbDims;
    auto input_d = X->getDimensions().d;
    int reshape_dim3[3] = {0};
    int reshape_dim4[4] = {0};
    PADDLE_ENFORCE_LE(x_num_col_dims, input_dims,
                      platform::errors::InvalidArgument(
                          "Params and input dims mismatch. Paddle-TRT FC "
                          "converter expects x_num_col_dims <= input dims"));
    if (x_num_col_dims == 1) {
      if (input_dims == 4) {
        PADDLE_ENFORCE_EQ(
            input_d[3], 1,
            platform::errors::InvalidArgument(
                "Invalid dimensions. When x_num_col_dims equals to 1 and input "
                "dims equals to 4, the last dim of input must be 1, but got %d",
                input_d[3]));
      }
      for (int i = 0; i < 3; i++) {
        if (i < input_dims) {
          reshape_dim3[i] = input_d[i];
        } else {
          reshape_dim3[i] = 1;
        }
      }
      nvinfer1::Dims3 reshape_dim(reshape_dim3[0], reshape_dim3[1],
                                  reshape_dim3[2]);
      auto* reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
      reshape_layer->setReshapeDimensions(reshape_dim);
      reshape_itensor = reshape_layer->getOutput(0);
    } else {
      PADDLE_ENFORCE_NE(input_dims, 1,
                        platform::errors::InvalidArgument(
                            "Invalid dimensions. When x_num_col_dims equals to "
                            "2, input_dims should not be 1"));
      for (int i = 0; i < 4; i++) {
        if (i < input_dims) {
          reshape_dim4[i] = input_d[i];
        } else {
          reshape_dim4[i] = 1;
        }
      }
      nvinfer1::Dims4 reshape_dim(reshape_dim4[0], reshape_dim4[1],
                                  reshape_dim4[2], reshape_dim4[3]);
      auto* reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
      reshape_layer->setReshapeDimensions(reshape_dim);
      reshape_itensor = reshape_layer->getOutput(0);
    }
251
    regist_fc(reshape_itensor, n_output, weight, bias);
252 253 254 255 256 257 258
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

N
nhzlx 已提交
259
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);