quantize_mkldnn_op.cc 5.0 KB
Newer Older
X
xiaoli.liu@intel.com 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/quantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaoli.liu@intel.com 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
X
xiaoli.liu@intel.com 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;

33 34 35 36 37 38 39 40 41 42 43 44
std::string CreateKey(const paddle::framework::ExecutionContext& ctx,
                      const std::vector<int>& src_tz, const float scale_data,
                      const bool is_negative) {
  std::string key;
  key.reserve(platform::MKLDNNHandler::MaxKeyLength);
  platform::MKLDNNHandler::AppendKeyDims(&key, src_tz);
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(scale_data));
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(is_negative));
  platform::MKLDNNHandler::AppendKey(&key, ctx.op().Output("Output"));
  return key;
}

X
xiaoli.liu@intel.com 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
template <typename T>
class QuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_data = ctx.Attr<float>("Scale");
    auto* output = ctx.Output<Tensor>("Output");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

    std::vector<primitive> pipeline;
    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

    const T* input_data = input->data<T>();

    bool is_negative = ctx.Attr<bool>("is_negative_input");
63 64 65 66 67 68
    std::string key = CreateKey(ctx, src_tz, scale_data, is_negative);
    const std::string key_prim = key + "@reorder_p";
    const std::string key_src_mem = key + "@src_mem";
    const std::string key_dst_mem = key + "@dst_mem";

    std::shared_ptr<mkldnn::memory> src_memory;
X
xiaoli.liu@intel.com 已提交
69
    std::shared_ptr<mkldnn::memory> dst_memory;
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    std::shared_ptr<reorder> reorder_p;
    reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));

    if (reorder_p == nullptr) {
      mkldnn::primitive_attr attri;
      int mask = 0;
      attri.set_output_scales(mask, {scale_data});

      auto src_md = platform::MKLDNNMemDesc({src_tz}, memory::data_type::f32,
                                            input->format());
      auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
      src_memory =
          std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
      std::shared_ptr<primitive::at> src_memory_p =
          std::shared_ptr<primitive::at>(new primitive::at(*src_memory));

      std::shared_ptr<mkldnn::memory::primitive_desc> dst_pd;
      if (is_negative) {
88 89
        platform::SetDstMemoryQuantized<int8_t>(ctx, output, dst_tz, engine,
                                                dst_pd, dst_memory);
90
      } else {
91 92
        platform::SetDstMemoryQuantized<uint8_t>(ctx, output, dst_tz, engine,
                                                 dst_pd, dst_memory);
93 94 95 96 97 98 99 100 101
      }
      auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
          new reorder::primitive_desc(src_pd, *dst_pd, attri));
      reorder_p = std::shared_ptr<reorder>(
          new reorder(*reorder_pd, *src_memory_p, *dst_memory));

      dev_ctx.SetBlob(key_prim, reorder_p);
      dev_ctx.SetBlob(key_src_mem, src_memory);
      dev_ctx.SetBlob(key_dst_mem, dst_memory);
X
xiaoli.liu@intel.com 已提交
102
    } else {
103 104 105 106 107 108 109 110 111 112 113 114
      src_memory = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(key_src_mem));
      src_memory->set_data_handle(to_void_cast<T>(input_data));

      dst_memory = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(key_dst_mem));
      auto place = ctx.GetPlace();
      if (is_negative) {
        dst_memory->set_data_handle(output->mutable_data<int8_t>(place));
      } else {
        dst_memory->set_data_handle(output->mutable_data<uint8_t>(place));
      }
X
xiaoli.liu@intel.com 已提交
115
    }
116

X
xiaoli.liu@intel.com 已提交
117 118 119 120 121 122 123 124 125 126 127 128
    pipeline.push_back(*reorder_p);
    stream(stream::kind::eager).submit(pipeline).wait();
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory));
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(quantize, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::QuantOpKernel<float>);