auto_parallel_recompute.py 22.0 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

17 18 19 20 21
from paddle.distributed.auto_parallel.dist_attribute import (
    OperatorDistributedAttribute,
)
from paddle.distributed.auto_parallel.utils import (
    get_loss_op,
22 23
    insert_dependencies_for_two_ops,
    naive_set_dist_op_attr_for_program_by_mesh_and_mapping,
24
    set_dist_op_desc_original_id,
25
    set_var_dist_attr,
26
)
27 28 29 30 31 32 33 34 35
from paddle.fluid import core
from paddle.fluid import framework as framework
from paddle.fluid import unique_name
from paddle.fluid.backward import (
    ProgramStats,
    _append_grad_suffix_,
    _find_op_path_,
    _get_no_grad_set_name,
    _rename_arg_,
36
)
37

38 39
from .pass_base import PassBase, register_pass

40

41 42 43 44 45 46
def _to_be_recomputed(op):
    return op.has_attr('op_namescope') and "/auto_parallel/rc_" in op.attr(
        'op_namescope'
    )


47 48
class RecomputeState(ProgramStats):
    def __init__(self, block, ops):
49
        super().__init__(block=block, ops=ops)
50 51
        self._block = block
        self._ops = ops
52
        # {varname: {as_input_ops: op_idx, as_output_ops: op_idx}}
53
        self.var_op_deps = {}
54 55
        # {segment_name: op_idx}
        self.seg_op_deps = {}
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

    def build_stats(self):
        for i, op in enumerate(self._ops):
            for name in op.desc.input_arg_names():
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for name in op.desc.output_arg_names():
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
            if not _to_be_recomputed(op):
                continue

            seg_name = op.attr('op_namescope')
            if seg_name not in self.seg_op_deps:
                self.seg_op_deps[seg_name] = [i]
            else:
                assert (
                    self.seg_op_deps[seg_name][-1] + 1 == i
                ), "The recompute segment's ops should be continuous"
                self.seg_op_deps[seg_name].extend([i])

    def get_recompute_segments(
        self, checkpoints_list=None, no_recompute_segments=[]
    ):
        """get recompute segments and checkpoints"""
91
        segments = []
92 93 94 95 96 97
        checkpoints = checkpoints_list or []

        if len(checkpoints) == 0:
            # the segments is marked by `auto.recompute()` api
            for segment_idx in self.seg_op_deps.values():
                if len(segment_idx) == 1:
98
                    continue
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
                segments.append([segment_idx[0], segment_idx[-1] + 1])
                checkpoints.extend(self._ops[segment_idx[-1]].output_arg_names)
        else:
            # the segments is marked by `strategy.checkpoints` api
            start_idx = -1
            pre_segment_end_idx = -1
            while start_idx + 1 < len(checkpoints):
                if start_idx == -1:
                    ckpt_name = checkpoints[start_idx + 1]
                    if ckpt_name not in self.var_op_deps:
                        start_idx += 1
                        continue
                    op_idx_list = self.var_op_deps[ckpt_name][
                        "var_as_output_ops"
                    ]
                    if op_idx_list:
                        segments.append([0, max(op_idx_list) + 1])
116
                else:
117 118
                    flag, min_idx, max_idx = self.is_subgraph(
                        [checkpoints[start_idx]], [checkpoints[start_idx + 1]]
119
                    )
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
                    if flag:
                        min_idx = self._update_segment_start(
                            min_idx, pre_segment_end_idx
                        )
                        segments.append([min_idx, max_idx + 1])
                    else:
                        logging.info(
                            "Could not recompute op range [{}] - [{}] ".format(
                                min_idx, max_idx + 1
                            )
                        )
                start_idx += 1

        if no_recompute_segments:
            for i in reversed(sorted(no_recompute_segments)):
                assert i < len(
                    segments
                ), "the no_recompute_segments idx [{}] should be lower the number of segment [{}]".format(
                    i, len(segments)
                )
                segments.pop(i)
141 142 143

        for i, (idx1, idx2) in enumerate(segments):
            logging.info("recompute segment[{}]".format(i))
144 145 146 147 148 149 150 151 152 153 154 155 156 157
            logging.info(
                "segment start op: [{}]: [{}] [{}]".format(
                    self._ops[idx1].desc.type(),
                    self._ops[idx1].desc.input_arg_names(),
                    self._ops[idx1].desc.output_arg_names(),
                )
            )
            logging.info(
                "segment end op: [{}]: [{}] [{}]".format(
                    self._ops[idx2 - 1].desc.type(),
                    self._ops[idx2 - 1].desc.input_arg_names(),
                    self._ops[idx2 - 1].desc.output_arg_names(),
                )
            )
158

159 160 161 162
        return segments, checkpoints

    def is_recompute(self):
        return any([_to_be_recomputed(op) for op in self._ops])
163 164 165

    def modify_forward_desc_for_recompute(self, dist_context):
        """
166
        If program's foward part has 'dropout' op, this function will insert
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        a seed op before it to guarantee that two dropout op have the same outputs.
        """
        op_types = [op.desc.type() for op in self._ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while op_idx < len(self._ops):
            cur_op = self._ops[op_idx]
            if "grad" in cur_op.type:
                break
            if cur_op.type != "dropout":
                op_idx += 1
                continue
            if cur_op.input("Seed") is not None and len(cur_op.input("Seed")):
                op_idx += 1
                continue

            cur_op_dist_attr = dist_context.get_op_dist_attr_for_program(cur_op)
            # insert seed op to guarantee that two dropout op have the same outputs
            op_unique_name = unique_name.generate("seed")
188 189 190
            var_unique_name = unique_name.generate_with_ignorable_key(
                ".".join([op_unique_name, 'tmp'])
            )
191 192 193 194 195
            seed_var = self._block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
196 197
                stop_gradient=False,
            )
198 199 200 201

            # set new seed_var's dist_attr
            ref_dims_mapping = [-1]
            ref_process_mesh = cur_op_dist_attr.process_mesh
202 203 204 205 206 207 208 209 210
            seed_var_dist_attr = set_var_dist_attr(
                dist_context, seed_var, ref_dims_mapping, ref_process_mesh
            )

            seed = (
                0
                if cur_op.attr("fix_seed") is False
                else int(cur_op.attr("seed"))
            )
211
            # TODO add dependency for seed op to ensure it be issued just before recompute.
212 213 214 215 216
            seed_op = self._block._insert_op_without_sync(
                index=cur_op.idx,
                type="seed",
                inputs={},
                outputs={"Out": seed_var},
217 218
                attrs={"seed": seed, "force_cpu": True},
            )
219
            seed_op._set_attr('op_namescope', cur_op.attr('op_namescope'))
220 221
            # set new seed op's dist_attr
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
222 223
                seed_op, ref_process_mesh, ref_dims_mapping, dist_context
            )
224 225 226 227

            # modify dropout op's desc
            self._ops.insert(op_idx, seed_op)
            cur_op.desc.set_input("Seed", [var_unique_name])
228 229
            cur_op._remove_attr("fix_seed")
            cur_op._remove_attr("seed")
230 231 232
            cur_op_dist_attr.set_input_dist_attr(
                seed_var.name, seed_var_dist_attr
            )
233 234
            op_idx += 2

235 236
        self._block._sync_with_cpp()

237 238 239 240 241 242 243 244 245

def _find_op_index(block, cur_op):
    for idx in range(block.desc.op_size()):
        if cur_op.desc == block.desc.op(idx):
            return idx
    return -1


def _get_stop_gradients(program, no_grad_set):
246
    """get no grad var"""
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    if no_grad_set is None:
        no_grad_set = set()
    else:
        no_grad_set = _get_no_grad_set_name(no_grad_set)

    no_grad_set_name = set()
    for var in program.list_vars():
        if "@GRAD" in var.name:
            break
        if var.stop_gradient:
            no_grad_set_name.add(_append_grad_suffix_(var.name))
    no_grad_set_name.update(list(map(_append_grad_suffix_, no_grad_set)))
    return no_grad_set_name


262 263 264
def _add_needed_descs_to_block(
    descs, block, main_block, in_memory_vars, dist_context
):
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    """
    Get the recomputed ops which will insert the backward part
    """
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            set_dist_op_desc_original_id(new_op_desc, desc, dist_context)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


@register_pass("auto_parallel_recompute")
class RecomputePass(PassBase):
    def __init__(self):
296
        super().__init__()
297 298 299 300
        self.set_attr("checkpoints", None)
        self.set_attr("loss", None)
        self.set_attr("dist_context", None)
        self.set_attr("no_grad_set", None)
301
        self.set_attr("no_recompute_segments", [])
302 303 304 305 306 307 308 309 310 311 312

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
        if self.get_attr("loss") is None:
            return False
        return True

    def _check_conflict(self, other_pass):
        return True

313
    def _apply_single_impl(self, main_program, startup_program, context):
314
        checkpoints = self.get_attr("checkpoints")
315
        no_recompute_segments = self.get_attr("no_recompute_segments")
316 317 318 319
        loss = self.get_attr("loss")
        no_grad_set = self.get_attr("no_grad_set")
        self._dist_context = self.get_attr("dist_context")

320
        # 0. get op_path which is related to loss
321 322
        main_block = main_program.global_block()
        no_grad_set_name = _get_stop_gradients(main_program, no_grad_set)
323 324
        op_path = _find_op_path_(main_block, [loss], [], no_grad_set_name)

325
        # 1. build recompute state
326
        rc_state = RecomputeState(main_block, op_path)
327 328 329 330
        if not rc_state.is_recompute() and not checkpoints:
            return

        # 2. get the segments to be recomputed
331 332
        rc_state.modify_forward_desc_for_recompute(self._dist_context)
        rc_state.build_stats()
333 334 335 336 337
        checkpoints = rc_state.sort_checkpoints(checkpoints or [])
        segments, checkpoints = rc_state.get_recompute_segments(
            checkpoints, no_recompute_segments
        )
        if segments == [] or checkpoints == []:
338 339
            return

340
        # 3. get vars that should be hold in memory
341 342 343
        vars_should_be_hold = []
        for segment in segments:
            vars_should_be_hold.extend(
344 345
                rc_state.get_out_of_subgraph_vars(segment[0], segment[1])
            )
346
        cross_vars = set(vars_should_be_hold) - set(checkpoints)
347 348 349
        logging.info(
            "found [{}] vars which cross recompute segment: [{}],"
            "better checkpoints might be set to reduce those vars".format(
350 351 352
                len(cross_vars), cross_vars
            )
        )
353 354 355 356 357
        vars_should_be_hold.extend(rc_state.get_reserved_vars())
        vars_should_be_hold.extend(rc_state.get_input_nodes())
        vars_should_be_hold = list(set(vars_should_be_hold))
        vars_in_memory = vars_should_be_hold + checkpoints

358 359 360
        # 4. get the fwd ops desc to be recomputed.
        var_name_dict = {}  # varname --> varname.subprog_XXX
        ckpt_ops_dict = {}  # ckpt_op_id --> segment_descs
361 362
        buffer_block = main_block.program._create_block()
        for i, segment in enumerate(segments[::-1]):
363
            fwd_ops = op_path[segment[0] : segment[1]]
364 365 366 367 368
            var_suffix = ".subprog_%d" % i
            for op in fwd_ops:
                input_and_output_names = []
                input_and_output_names.extend(op.desc.input_arg_names())
                input_and_output_names.extend(op.desc.output_arg_names())
369 370 371
                cur_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(op)
                )
372 373 374 375 376 377 378 379 380
                assert cur_op_dist_attr is not None
                for name in input_and_output_names:
                    if main_block.var(name).persistable or name in checkpoints:
                        continue
                    if name in vars_should_be_hold:
                        continue
                    if name not in var_name_dict:
                        ref_process_mesh = cur_op_dist_attr.process_mesh
                        if name in op.desc.input_arg_names():
381 382 383
                            ref_dims_mapping = (
                                cur_op_dist_attr.get_input_dims_mapping(name)
                            )
384
                        else:
385 386 387
                            ref_dims_mapping = (
                                cur_op_dist_attr.get_output_dims_mapping(name)
                            )
388 389 390 391 392 393 394 395 396 397
                        # record recomputed var's old_name and new_name (old_name.subprog_XXX)
                        # create new var with new name
                        var_name_dict[name] = name + var_suffix
                        ref_var = main_block.var(name)
                        rc_var = main_block.create_var(
                            name=var_name_dict[name],
                            shape=ref_var.shape,
                            dtype=ref_var.dtype,
                            type=ref_var.type,
                            persistable=ref_var.persistable,
398 399
                            stop_gradient=ref_var.stop_gradient,
                        )
400
                        # set new recomputed var's dist attr
401 402 403 404 405 406
                        set_var_dist_attr(
                            self._dist_context,
                            rc_var,
                            ref_dims_mapping,
                            ref_process_mesh,
                        )
407
            # get recomputed segment's descs
408 409 410 411 412 413 414
            segment_descs = _add_needed_descs_to_block(
                fwd_ops,
                buffer_block,
                main_block,
                vars_in_memory,
                self._dist_context,
            )
415 416 417 418 419
            # rename recomputed ops' input and output var name
            for key in var_name_dict:
                _rename_arg_(segment_descs, key, var_name_dict[key])

            # NOTE: one forward op could be correspond to multiple xxx_grad op.
420
            # When traversing all grad_ops in reverse, need to set a flag to indicate
421 422
            # whether the ckpt and its segment_descs can be used.
            ckpt_op = op_path[segment[1] - 1]
423
            ckpt_ops_dict[ckpt_op.desc.original_id()] = [True, segment_descs]
424

425
        # 5. insert recomputed fwd ops into backward parse
426 427 428 429 430 431 432 433 434 435 436
        ops = main_block.ops
        loss_op = get_loss_op(main_block)
        loss_op_idx = _find_op_index(main_block, loss_op)
        dist_op_context = self._dist_context.dist_op_context
        assert loss_op_idx != -1
        # Traversing all grad_ops in reverse, and if the fwd op corresponding to reverse op is checkpoints,
        # segments ops should be inserted.
        for i in range(len(ops) - 1, loss_op_idx, -1):
            grad_op = ops[i]
            # remove some attrs of dropout_grad op's desc
            if grad_op.type == "dropout_grad":
437 438
                grad_op._remove_attr("fix_seed")
                grad_op._remove_attr("seed")
439 440 441

            # rename grad op's var_name which is not in 'vars_in_memory'
            for key in var_name_dict:
442 443 444 445
                if (
                    key
                    not in grad_op.input_arg_names + grad_op.output_arg_names
                ):
446
                    continue
447 448 449 450
                self.reset_op_dist_attr(grad_op, var_name_dict)
                _rename_arg_([grad_op.desc], key, var_name_dict[key])

            # insert recomputed ops
451 452 453
            original_id = grad_op.desc.original_id()
            if original_id in dist_op_context.grad_op_id_to_op_id:
                fwd_op_id = dist_op_context.grad_op_id_to_op_id[original_id]
454 455 456 457 458
                if fwd_op_id in ckpt_ops_dict and ckpt_ops_dict[fwd_op_id][0]:
                    idx = grad_op.idx
                    while idx - 1 >= 0 and ops[idx - 1].type == "sum":
                        idx -= 1
                    segment_descs = ckpt_ops_dict[fwd_op_id][1]
459
                    rc_op = None
460
                    for _, op_desc in reversed(list(enumerate(segment_descs))):
461 462 463
                        rc_op = main_block._insert_op_without_sync(
                            idx, type='nop'
                        )
464
                        rc_desc = rc_op.desc
465
                        rc_desc.copy_from(op_desc)
466
                        rc_desc.set_original_id(rc_desc.id())
467 468
                        # set recomputed ops' dist attr
                        fwd_op_dist_attr = self._dist_context.get_op_dist_attr_for_program_with_id(
469 470
                            op_desc.original_id()
                        )
471
                        assert fwd_op_dist_attr is not None
472 473 474
                        self.set_op_dist_attr(
                            rc_op, fwd_op_dist_attr, var_name_dict
                        )
475 476

                    ckpt_ops_dict[fwd_op_id][0] = False
477
                    if rc_op:
J
JZ-LIANG 已提交
478 479 480 481 482 483 484 485 486 487 488
                        prior_op = main_block.ops[rc_op.idx - 1]
                        posterior_op = rc_op
                        prior_mesh = (
                            self._dist_context.get_op_dist_attr_for_program(
                                prior_op
                            ).process_mesh
                        )
                        posterior_mesh = (
                            self._dist_context.get_op_dist_attr_for_program(
                                posterior_op
                            ).process_mesh
489
                        )
J
JZ-LIANG 已提交
490 491 492 493 494 495 496 497 498
                        # NOTE if two recompute segements across two pipeline stages
                        # not need dependecies for it
                        if prior_mesh == posterior_mesh:
                            insert_dependencies_for_two_ops(
                                main_block,
                                idx,
                                prior_op,
                                posterior_op,
                                self._dist_context,
499
                                is_recompute=True,
J
JZ-LIANG 已提交
500 501
                                sync=False,
                            )
502
        main_program._sync_with_cpp()
503 504 505 506 507 508 509

    def reset_op_dist_attr(self, op, var_name_dict):
        op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None
        for input in op.desc.input_arg_names():
            if input in var_name_dict.keys():
                in_dist_attr = op_dist_attr.get_input_dist_attr(input)
510 511 512
                op_dist_attr.set_input_dist_attr(
                    var_name_dict[input], in_dist_attr
                )
513 514 515
        for output in op.desc.output_arg_names():
            if output in var_name_dict.keys():
                out_dist_attr = op_dist_attr.get_output_dist_attr(output)
516 517 518
                op_dist_attr.set_output_dist_attr(
                    var_name_dict[output], out_dist_attr
                )
519 520 521 522 523

    def set_op_dist_attr(self, op, old_dist_attr, var_name_dict):
        new_dist_attr = OperatorDistributedAttribute()
        new_dist_attr.is_recompute = True
        new_dist_attr.impl_idx = old_dist_attr.impl_idx
Z
zhaoyingli 已提交
524
        new_dist_attr.impl_type = old_dist_attr.impl_type
525 526 527 528
        new_dist_attr.process_mesh = old_dist_attr.process_mesh
        for input in old_dist_attr.inputs_dist_attrs.keys():
            if input in var_name_dict.keys():
                in_dist_attr = old_dist_attr.inputs_dist_attrs[input]
529 530 531
                new_dist_attr.set_input_dist_attr(
                    var_name_dict[input], in_dist_attr
                )
532 533 534 535 536 537
            else:
                in_dist_attr = old_dist_attr.inputs_dist_attrs[input]
                new_dist_attr.set_input_dist_attr(input, in_dist_attr)
        for output in old_dist_attr.outputs_dist_attrs.keys():
            if output in var_name_dict.keys():
                out_dist_attr = old_dist_attr.outputs_dist_attrs[output]
538 539 540
                new_dist_attr.set_output_dist_attr(
                    var_name_dict[output], out_dist_attr
                )
541 542 543 544
            else:
                out_dist_attr = old_dist_attr.outputs_dist_attrs[output]
                new_dist_attr.set_output_dist_attr(output, out_dist_attr)
        self._dist_context.set_op_dist_attr_for_program(op, new_dist_attr)