test_deform_conv2d.py 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn.functional as F
import paddle.nn.initializer as I
import numpy as np
import unittest
20
from paddle.fluid.framework import _test_eager_guard
21 22 23 24 25
from unittest import TestCase


class TestDeformConv2D(TestCase):
    batch_size = 4
26
    spatial_shape = (5, 5)
27 28 29
    dtype = "float32"

    def setUp(self):
30
        self.in_channels = 2
31 32 33 34 35
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [0, 0]
        self.stride = [1, 1]
        self.dilation = [1, 1]
36
        self.deformable_groups = 1
37 38 39 40
        self.groups = 1
        self.no_bias = True

    def prepare(self):
41 42
        np.random.seed(1)
        paddle.seed(1)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
        if isinstance(self.kernel_size, int):
            filter_shape = (self.kernel_size, ) * 2
        else:
            filter_shape = tuple(self.kernel_size)
        self.filter_shape = filter_shape

        self.weight = np.random.uniform(
            -1, 1, (self.out_channels, self.in_channels // self.groups
                    ) + filter_shape).astype(self.dtype)
        if not self.no_bias:
            self.bias = np.random.uniform(-1, 1, (
                self.out_channels, )).astype(self.dtype)

        def out_size(in_size, pad_size, dilation_size, kernel_size,
                     stride_size):
            return (in_size + 2 * pad_size -
                    (dilation_size * (kernel_size - 1) + 1)) / stride_size + 1

        out_h = int(
            out_size(self.spatial_shape[0], self.padding[0], self.dilation[0],
                     self.kernel_size[0], self.stride[0]))
        out_w = int(
            out_size(self.spatial_shape[1], self.padding[1], self.dilation[1],
                     self.kernel_size[1], self.stride[1]))
        out_shape = (out_h, out_w)

        self.input_shape = (self.batch_size, self.in_channels
                            ) + self.spatial_shape

72 73
        self.offset_shape = (self.batch_size, self.deformable_groups * 2 *
                             filter_shape[0] * filter_shape[1]) + out_shape
74

75 76
        self.mask_shape = (self.batch_size, self.deformable_groups *
                           filter_shape[0] * filter_shape[1]) + out_shape
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

        self.input = np.random.uniform(-1, 1,
                                       self.input_shape).astype(self.dtype)

        self.offset = np.random.uniform(-1, 1,
                                        self.offset_shape).astype(self.dtype)

        self.mask = np.random.uniform(-1, 1, self.mask_shape).astype(self.dtype)

    def static_graph_case_dcn(self):
        main = paddle.static.Program()
        start = paddle.static.Program()
        paddle.enable_static()
        with paddle.static.program_guard(main, start):
            x = paddle.static.data(
                "input", (-1, self.in_channels, -1, -1), dtype=self.dtype)
            offset = paddle.static.data(
94 95
                "offset", (-1, self.deformable_groups * 2 *
                           self.filter_shape[0] * self.filter_shape[1], -1, -1),
96 97
                dtype=self.dtype)
            mask = paddle.static.data(
98 99
                "mask", (-1, self.deformable_groups * self.filter_shape[0] *
                         self.filter_shape[1], -1, -1),
100 101 102 103 104 105 106 107 108 109 110 111
                dtype=self.dtype)

            y_v1 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=None,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
112
                deformable_groups=self.deformable_groups,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias),
                modulated=False)

            y_v2 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=mask,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
128
                deformable_groups=self.deformable_groups,
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias))

        exe = paddle.static.Executor(self.place)
        exe.run(start)
        out_v1, out_v2 = exe.run(main,
                                 feed={
                                     "input": self.input,
                                     "offset": self.offset,
                                     "mask": self.mask
                                 },
                                 fetch_list=[y_v1, y_v2])
        return out_v1, out_v2

    def dygraph_case_dcn(self):
        paddle.disable_static()
        x = paddle.to_tensor(self.input)
        offset = paddle.to_tensor(self.offset)
        mask = paddle.to_tensor(self.mask)

        bias = None if self.no_bias else paddle.to_tensor(self.bias)

        deform_conv2d = paddle.vision.ops.DeformConv2D(
            in_channels=self.in_channels,
            out_channels=self.out_channels,
            kernel_size=self.kernel_size,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
159
            deformable_groups=self.deformable_groups,
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            groups=self.groups,
            weight_attr=I.Assign(self.weight),
            bias_attr=False if self.no_bias else I.Assign(self.bias))

        y_v1 = deform_conv2d(x, offset)
        y_v2 = deform_conv2d(x, offset, mask)

        out_v1 = y_v1.numpy()
        out_v2 = y_v2.numpy()

        return out_v1, out_v2

    def _test_identity(self):
        self.prepare()
        static_dcn_v1, static_dcn_v2 = self.static_graph_case_dcn()
        dy_dcn_v1, dy_dcn_v2 = self.dygraph_case_dcn()
        np.testing.assert_array_almost_equal(static_dcn_v1, dy_dcn_v1)
        np.testing.assert_array_almost_equal(static_dcn_v2, dy_dcn_v2)

    def test_identity(self):
        self.place = paddle.CPUPlace()
        self._test_identity()

        if paddle.is_compiled_with_cuda():
            self.place = paddle.CUDAPlace(0)
            self._test_identity()

187 188 189 190
    def test_identity_with_eager_guard(self):
        with _test_eager_guard():
            self.test_identity()

191 192 193

class TestDeformConv2DFunctional(TestCase):
    batch_size = 4
194
    spatial_shape = (5, 5)
195 196 197
    dtype = "float32"

    def setUp(self):
198
        self.in_channels = 2
199 200 201 202 203
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [0, 0]
        self.stride = [1, 1]
        self.dilation = [1, 1]
204
        self.deformable_groups = 1
205 206 207 208
        self.groups = 1
        self.no_bias = True

    def prepare(self):
209 210
        np.random.seed(1)
        paddle.seed(1)
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        if isinstance(self.kernel_size, int):
            filter_shape = (self.kernel_size, ) * 2
        else:
            filter_shape = tuple(self.kernel_size)
        self.filter_shape = filter_shape

        self.weight = np.random.uniform(
            -1, 1, (self.out_channels, self.in_channels // self.groups
                    ) + filter_shape).astype(self.dtype)
        if not self.no_bias:
            self.bias = np.random.uniform(-1, 1, (
                self.out_channels, )).astype(self.dtype)

        def out_size(in_size, pad_size, dilation_size, kernel_size,
                     stride_size):
            return (in_size + 2 * pad_size -
                    (dilation_size * (kernel_size - 1) + 1)) / stride_size + 1

        out_h = int(
            out_size(self.spatial_shape[0], self.padding[0], self.dilation[0],
                     self.kernel_size[0], self.stride[0]))
        out_w = int(
            out_size(self.spatial_shape[1], self.padding[1], self.dilation[1],
                     self.kernel_size[1], self.stride[1]))
        out_shape = (out_h, out_w)

        self.input_shape = (self.batch_size, self.in_channels
                            ) + self.spatial_shape

240 241
        self.offset_shape = (self.batch_size, self.deformable_groups * 2 *
                             filter_shape[0] * filter_shape[1]) + out_shape
242

243 244
        self.mask_shape = (self.batch_size, self.deformable_groups *
                           filter_shape[0] * filter_shape[1]) + out_shape
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

        self.input = np.random.uniform(-1, 1,
                                       self.input_shape).astype(self.dtype)

        self.offset = np.random.uniform(-1, 1,
                                        self.offset_shape).astype(self.dtype)

        self.mask = np.random.uniform(-1, 1, self.mask_shape).astype(self.dtype)

    def static_graph_case_dcn(self):
        main = paddle.static.Program()
        start = paddle.static.Program()
        paddle.enable_static()
        with paddle.static.program_guard(main, start):
            x = paddle.static.data(
                "input", (-1, self.in_channels, -1, -1), dtype=self.dtype)
            offset = paddle.static.data(
262 263
                "offset", (-1, self.deformable_groups * 2 *
                           self.filter_shape[0] * self.filter_shape[1], -1, -1),
264 265
                dtype=self.dtype)
            mask = paddle.static.data(
266 267
                "mask", (-1, self.deformable_groups * self.filter_shape[0] *
                         self.filter_shape[1], -1, -1),
268 269 270 271 272 273 274 275 276 277 278 279
                dtype=self.dtype)

            y_v1 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=None,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
280
                deformable_groups=self.deformable_groups,
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias),
                modulated=False)

            y_v2 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=mask,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
296
                deformable_groups=self.deformable_groups,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias))

        exe = paddle.static.Executor(self.place)
        exe.run(start)
        out_v1, out_v2 = exe.run(main,
                                 feed={
                                     "input": self.input,
                                     "offset": self.offset,
                                     "mask": self.mask
                                 },
                                 fetch_list=[y_v1, y_v2])
        return out_v1, out_v2

    def dygraph_case_dcn(self):
        paddle.disable_static()
        x = paddle.to_tensor(self.input)
        offset = paddle.to_tensor(self.offset)
        mask = paddle.to_tensor(self.mask)
        weight = paddle.to_tensor(self.weight)
        bias = None if self.no_bias else paddle.to_tensor(self.bias)

        y_v1 = paddle.vision.ops.deform_conv2d(
            x=x,
            offset=offset,
            weight=weight,
            bias=bias,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
328
            deformable_groups=self.deformable_groups,
329 330 331 332 333 334 335 336 337 338 339
            groups=self.groups, )

        y_v2 = paddle.vision.ops.deform_conv2d(
            x=x,
            offset=offset,
            mask=mask,
            weight=weight,
            bias=bias,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
340
            deformable_groups=self.deformable_groups,
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
            groups=self.groups, )

        out_v1 = y_v1.numpy()
        out_v2 = y_v2.numpy()

        return out_v1, out_v2

    def new_api_static_graph_case_dcn(self):
        main = paddle.static.Program()
        start = paddle.static.Program()
        paddle.enable_static()
        with paddle.static.program_guard(main, start):
            x = paddle.static.data(
                "input", (-1, self.in_channels, -1, -1), dtype=self.dtype)
            offset = paddle.static.data(
356 357
                "offset", (-1, self.deformable_groups * 2 *
                           self.filter_shape[0] * self.filter_shape[1], -1, -1),
358 359
                dtype=self.dtype)
            mask = paddle.static.data(
360 361
                "mask", (-1, self.deformable_groups * self.filter_shape[0] *
                         self.filter_shape[1], -1, -1),
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
                dtype=self.dtype)

            weight = paddle.static.data(
                "weight", list(self.weight.shape), dtype=self.dtype)

            if not self.no_bias:
                bias = paddle.static.data("bias", [-1], dtype=self.dtype)

            y_v1 = paddle.vision.ops.deform_conv2d(
                x=x,
                offset=offset,
                weight=weight,
                bias=None if self.no_bias else bias,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
378
                deformable_groups=self.deformable_groups,
379 380 381 382 383 384 385 386 387 388 389
                groups=self.groups, )

            y_v2 = paddle.vision.ops.deform_conv2d(
                x=x,
                offset=offset,
                mask=mask,
                weight=weight,
                bias=None if self.no_bias else bias,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
390
                deformable_groups=self.deformable_groups,
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
                groups=self.groups, )

        exe = paddle.static.Executor(self.place)
        exe.run(start)
        feed_dict = {
            "input": self.input,
            "offset": self.offset,
            "mask": self.mask,
            "weight": self.weight
        }
        if not self.no_bias:
            feed_dict["bias"] = self.bias

        out_v1, out_v2 = exe.run(main, feed=feed_dict, fetch_list=[y_v1, y_v2])
        return out_v1, out_v2

    def _test_identity(self):
        self.prepare()
        static_dcn_v1, static_dcn_v2 = self.static_graph_case_dcn()
        dy_dcn_v1, dy_dcn_v2 = self.dygraph_case_dcn()
        new_static_dcn_v1, new_static_dcn_v2 = self.new_api_static_graph_case_dcn(
        )
        np.testing.assert_array_almost_equal(static_dcn_v1, dy_dcn_v1)
        np.testing.assert_array_almost_equal(static_dcn_v2, dy_dcn_v2)
        np.testing.assert_array_almost_equal(static_dcn_v1, new_static_dcn_v1)
        np.testing.assert_array_almost_equal(static_dcn_v2, new_static_dcn_v2)

    def test_identity(self):
        self.place = paddle.CPUPlace()
        self._test_identity()

        if paddle.is_compiled_with_cuda():
            self.place = paddle.CUDAPlace(0)
            self._test_identity()

426 427 428 429
    def test_identity_with_eager_guard(self):
        with _test_eager_guard():
            self.test_identity()

430 431 432 433 434 435 436 437 438 439

# testcases for DeformConv2D
class TestDeformConv2DWithPadding(TestDeformConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
440
        self.deformable_groups = 1
441 442 443 444 445 446 447 448 449 450 451 452
        self.groups = 1
        self.no_bias = True


class TestDeformConv2DWithBias(TestDeformConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
453
        self.deformable_groups = 1
454 455 456 457 458 459 460 461 462 463 464 465
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithAsynPadding(TestDeformConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
466
        self.deformable_groups = 1
467 468 469 470 471 472 473 474 475 476 477 478
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithDilation(TestDeformConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [3, 3]
479
        self.deformable_groups = 1
480 481 482 483 484 485 486 487 488 489 490 491
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithStride(TestDeformConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
492 493 494 495 496 497 498 499 500 501 502 503 504 505
        self.deformable_groups = 1
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithDeformable_Groups(TestDeformConv2D):
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
        self.deformable_groups = 5
506 507 508 509 510 511 512 513 514 515 516 517
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithGroups(TestDeformConv2D):
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
518
        self.deformable_groups = 1
519 520 521 522 523 524 525 526 527 528 529 530 531
        self.groups = 5
        self.no_bias = False


# testcases for deform_conv2d
class TestDeformConv2DFunctionalWithPadding(TestDeformConv2DFunctional):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
532
        self.deformable_groups = 1
533 534 535 536 537 538 539 540 541 542 543 544
        self.groups = 1
        self.no_bias = True


class TestDeformConv2DFunctionalWithBias(TestDeformConv2DFunctional):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
545
        self.deformable_groups = 1
546 547 548 549 550 551 552 553 554 555 556 557
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithAsynPadding(TestDeformConv2DFunctional):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
558
        self.deformable_groups = 1
559 560 561 562 563 564 565 566 567 568 569 570
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithDilation(TestDeformConv2DFunctional):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [3, 3]
571
        self.deformable_groups = 1
572 573 574 575 576 577 578 579 580 581 582 583
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithStride(TestDeformConv2DFunctional):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        self.deformable_groups = 1
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithDeformable_Groups(
        TestDeformConv2DFunctional):
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
        self.deformable_groups = 5
599 600 601 602 603 604 605 606 607 608 609 610
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithGroups(TestDeformConv2DFunctional):
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
611
        self.deformable_groups = 1
612 613 614 615 616 617
        self.groups = 5
        self.no_bias = False


if __name__ == "__main__":
    unittest.main()