momentum_kernel_impl.h 25.0 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/kernels/funcs/algorithm.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/for_range.h"
22
#include "paddle/phi/kernels/funcs/selected_rows_functor.h"
23
#include "paddle/phi/kernels/momentum_kernel.h"
H
hong 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

namespace phi {

template <typename T>
using MultiPrecisionType = typename phi::dtype::MPTypeTrait<T>::Type;

template <typename T>
struct CPUDenseUpdater {
  template <typename G>
  void operator()(const DenseTensor& param,
                  const DenseTensor& velocity,
                  const T& mu,
                  const T& lr,
                  const bool use_nesterov,
                  G&& grad,
                  DenseTensor* param_out,
                  DenseTensor* velocity_out) const {
    auto param_out_vec = EigenVector<T>::Flatten(*param_out);
    auto velocity_out_vec = EigenVector<T>::Flatten(*velocity_out);

    auto param_vec = EigenVector<T>::Flatten(param);
    auto velocity_vec = EigenVector<T>::Flatten(velocity);
    velocity_out_vec = velocity_vec * mu + grad;
    if (use_nesterov) {
      param_out_vec = param_vec - (grad + velocity_out_vec * mu) * lr;
    } else {
      param_out_vec = param_vec - lr * velocity_out_vec;
    }
  }
};

struct NoNesterov;
struct UseNesterov;

enum class RegularizationType {
  kNONE = 0,
  kL1DECAY = 1,  // do not need support right now
  kL2DECAY = 2,
};

template <typename T>
class CPUDenseMomentumFunctor {
 public:
  void operator()(const DenseTensor* param,
                  const DenseTensor* grad,
                  const DenseTensor* velocity,
                  const DenseTensor* learning_rate,
                  const T mu,
                  const bool use_nesterov,
                  const RegularizationType regularization_flag,
                  const T regularization_coeff,
                  DenseTensor* param_out,
                  DenseTensor* velocity_out) {
    auto grad_vec = EigenVector<T>::Flatten(*grad);
    auto* lr = learning_rate->data<MultiPrecisionType<T>>();

    CPUDenseUpdater<T> updater;
    if (regularization_flag == RegularizationType::kL2DECAY) {
      auto param_vec = EigenVector<T>::Flatten(*param);
      updater(*param,
              *velocity,
              mu,
              static_cast<T>(lr[0]),
              use_nesterov,
              param_vec * regularization_coeff + grad_vec,
              param_out,
              velocity_out);
    } else {
      updater(*param,
              *velocity,
              mu,
              static_cast<T>(lr[0]),
              use_nesterov,
              grad_vec,
              param_out,
              velocity_out);
    }
  }
};

template <typename T,
          typename MT,
          RegularizationType kRegType,
          typename UpdateMethod>
class DenseMomentumFunctor;

// NOTE(dzh) for performance.
// avoid if/else in inside kernel, implement GPU UseNesterov/NoNesterov as two
// functor.
template <typename T, typename MT, RegularizationType kRegType>
class DenseMomentumFunctor<T, MT, kRegType, UseNesterov> {
 private:
  const T* param_;
  const T* grad_;
  const MT* velocity_;
  const MultiPrecisionType<MT>* lr_;
  const MT* master_param_;
  const MT mu_;
  const MT rescale_grad_;
  const int64_t num_;
  T* param_out_;
  MT* velocity_out_;
  MT* master_param_out_;
  const MT regularization_coeff_;

 public:
  DenseMomentumFunctor(const T* param,
                       const T* grad,
                       const MT* velocity,
                       const MultiPrecisionType<MT>* learning_rate,
                       const MT* master_param,
                       const MT mu,
                       const MT rescale_grad,
                       const int64_t num,
                       const MT regularization_coeff,
                       T* param_out,
                       MT* velocity_out,
                       MT* master_param_out)
      : param_(param),
        grad_(grad),
        velocity_(velocity),
        lr_(learning_rate),
        master_param_(master_param),
        mu_(mu),
        rescale_grad_(rescale_grad),
        num_(num),
        param_out_(param_out),
        velocity_out_(velocity_out),
        master_param_out_(master_param_out),
        regularization_coeff_(regularization_coeff) {}
  inline HOSTDEVICE void operator()(size_t i) const {
    // put memory access in register
    const MT param =
        master_param_ ? master_param_[i] : static_cast<MT>(param_[i]);
    MT grad = static_cast<MT>(grad_[i]) * rescale_grad_;
    const MT lr = static_cast<MT>(lr_[0]);
    const MT velocity = velocity_[i];

    if (kRegType == RegularizationType::kL2DECAY) {
      grad += regularization_coeff_ * param;
    }

    MT velocity_out = velocity * mu_ + grad;
    MT param_out = param - (grad + velocity_out * mu_) * lr;
    // write reigster to memory
    velocity_out_[i] = velocity_out;
    param_out_[i] = static_cast<T>(param_out);
    if (master_param_out_) {
      master_param_out_[i] = param_out;
    }
  }
};

template <typename T, typename MT, RegularizationType kRegType>
class DenseMomentumFunctor<T, MT, kRegType, NoNesterov> {
 private:
  const T* param_;
  const T* grad_;
  const MT* velocity_;
  const MultiPrecisionType<MT>* lr_;
  const MT* master_param_;
  const MT mu_;
  const MT rescale_grad_;
  const int64_t num_;
  T* param_out_;
  MT* velocity_out_;
  MT* master_param_out_;
  const MT regularization_coeff_;

 public:
  DenseMomentumFunctor(const T* param,
                       const T* grad,
                       const MT* velocity,
                       const MultiPrecisionType<MT>* learning_rate,
                       const MT* master_param,
                       const MT mu,
                       const MT rescale_grad,
                       const int64_t num,
                       const MT regularization_coeff,
                       T* param_out,
                       MT* velocity_out,
                       MT* master_param_out)
      : param_(param),
        grad_(grad),
        velocity_(velocity),
        lr_(learning_rate),
        master_param_(master_param),
        mu_(mu),
        rescale_grad_(rescale_grad),
        num_(num),
        param_out_(param_out),
        velocity_out_(velocity_out),
        master_param_out_(master_param_out),
        regularization_coeff_(regularization_coeff) {}
  inline HOSTDEVICE void operator()(size_t i) const {
    // put memory access in register
    const MT param =
        master_param_ ? master_param_[i] : static_cast<MT>(param_[i]);
    MT grad = static_cast<MT>(grad_[i]) * rescale_grad_;
    const MT lr = static_cast<MT>(lr_[0]);
    const MT velocity = velocity_[i];

    if (kRegType == RegularizationType::kL2DECAY) {
      grad += regularization_coeff_ * param;
    }

    MT velocity_out = velocity * mu_ + grad;
    MT param_out = param - lr * velocity_out;
    // write reigster to memory
    velocity_out_[i] = velocity_out;
    param_out_[i] = static_cast<T>(param_out);
    if (master_param_out_) {
      master_param_out_[i] = param_out;
    }
  }
};

template <typename T, typename MT, typename UpdateMethod>
class SparseMomentumFunctor;

template <typename T, typename MT>
class SparseMomentumFunctor<T, MT, UseNesterov> {
 private:
  const T* param_;
  const T* grad_;
  const MT* velocity_;
  const MultiPrecisionType<MT>* lr_;
  const MT* master_param_;
  const MT mu_;
  const MT rescale_grad_;
  const int64_t* rows_;
  const int64_t row_numel_;
  const int64_t row_height_;
  T* param_out_;
  MT* velocity_out_;
  MT* master_param_out_;
  const RegularizationType regularization_flag_;
  const MT regularization_coeff_;

 public:
  SparseMomentumFunctor(const T* param,
                        const T* grad,
                        const MT* velocity,
                        const MultiPrecisionType<MT>* lr,
                        const MT* master_param,
                        const MT mu,
                        const MT rescale_grad,
                        const int64_t* rows,
                        int64_t row_numel,
                        int64_t row_height,
                        const RegularizationType regularization_flag,
                        const MT regularization_coeff,
                        T* param_out,
                        MT* velocity_out,
                        MT* master_param_out)
      : param_(param),
        grad_(grad),
        velocity_(velocity),
        lr_(lr),
        master_param_(master_param),
        mu_(mu),
        rescale_grad_(rescale_grad),
        rows_(rows),
        row_numel_(row_numel),
        row_height_(row_height),
        param_out_(param_out),
        velocity_out_(velocity_out),
        master_param_out_(master_param_out),
        regularization_flag_(regularization_flag),
        regularization_coeff_(regularization_coeff) {}

  inline HOSTDEVICE void operator()(size_t i) {
    auto row_idx =
        phi::funcs::BinarySearch<int64_t>(rows_, row_height_, i / row_numel_);
    MT grad =
        row_idx >= 0
            ? static_cast<MT>(grad_[row_idx * row_numel_ + i % row_numel_]) *
                  rescale_grad_
            : static_cast<MT>(0);
    // put memory access in register
    const MT param =
        master_param_ ? master_param_[i] : static_cast<MT>(param_[i]);
    const MT lr = static_cast<MT>(lr_[0]);
    const MT velocity = velocity_[i];

    grad = regularization_flag_ == RegularizationType::kL2DECAY
               ? grad + regularization_coeff_ * param
               : grad;

    MT velocity_out = velocity * mu_ + grad;
    MT param_out = param - (grad + velocity_out * mu_) * lr;
    // write reigster to memory
    velocity_out_[i] = velocity_out;
    param_out_[i] = static_cast<T>(param_out);
    if (master_param_out_) {
      master_param_out_[i] = param_out;
    }
  }
};

template <typename T, typename MT>
class SparseMomentumFunctor<T, MT, NoNesterov> {
 private:
  const T* param_;
  const T* grad_;
  const MT* velocity_;
  const MultiPrecisionType<MT>* lr_;
  const MT* master_param_;
  const MT mu_;
  const MT rescale_grad_;
  const int64_t* rows_;
  const int64_t row_numel_;
  const int64_t row_height_;
  T* param_out_;
  MT* velocity_out_;
  MT* master_param_out_;
  const RegularizationType regularization_flag_;
  const MT regularization_coeff_;

 public:
  SparseMomentumFunctor(const T* param,
                        const T* grad,
                        const MT* velocity,
                        const MultiPrecisionType<MT>* lr,
                        const MT* master_param,
                        const MT mu,
                        const MT rescale_grad,
                        const int64_t* rows,
                        int64_t row_numel,
                        int64_t row_height,
                        const RegularizationType regularization_flag,
                        const MT regularization_coeff,
                        T* param_out,
                        MT* velocity_out,
                        MT* master_param_out)
      : param_(param),
        grad_(grad),
        velocity_(velocity),
        lr_(lr),
        master_param_(master_param),
        mu_(mu),
        rescale_grad_(rescale_grad),
        rows_(rows),
        row_numel_(row_numel),
        row_height_(row_height),
        param_out_(param_out),
        velocity_out_(velocity_out),
        master_param_out_(master_param_out),
        regularization_flag_(regularization_flag),
        regularization_coeff_(regularization_coeff) {}

  inline HOSTDEVICE void operator()(size_t i) {
    auto row_idx =
        phi::funcs::BinarySearch<int64_t>(rows_, row_height_, i / row_numel_);
    MT grad =
        row_idx >= 0
            ? static_cast<MT>(grad_[row_idx * row_numel_ + i % row_numel_]) *
                  rescale_grad_
            : static_cast<MT>(0);
    // put memory access in register
    const MT param =
        master_param_ ? master_param_[i] : static_cast<MT>(param_[i]);
    const MT lr = static_cast<MT>(lr_[0]);
    const MT velocity = velocity_[i];

    grad = regularization_flag_ == RegularizationType::kL2DECAY
               ? grad + regularization_coeff_ * param
               : grad;

    MT velocity_out = velocity * mu_ + grad;
    MT param_out = param - velocity_out * lr;
    // write reigster to memory
    velocity_out_[i] = velocity_out;
    param_out_[i] = static_cast<T>(param_out);
    if (master_param_out_) {
      master_param_out_[i] = param_out;
    }
  }
};

template <typename T, typename MT, typename Context>
void MomentumDenseImpl(const Context& ctx,
                       const DenseTensor& param,
                       const DenseTensor& grad,
                       const DenseTensor& velocity,
                       const DenseTensor& learning_rate,
410
                       const paddle::optional<DenseTensor>& master_param_opt,
H
hong 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
                       float mu_t,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff_t,
                       bool multi_precision,
                       float rescale_grad_t,
                       DenseTensor* param_out,
                       DenseTensor* velocity_out,
                       DenseTensor* master_param_out) {
  MT regularization_coeff = static_cast<MT>(regularization_coeff_t);
  RegularizationType regularization_flag{
      RegularizationType::kNONE};  // disable regularization
  if (regularization_method == "l2_decay") {
    regularization_flag = RegularizationType::kL2DECAY;
  }
  MT mu = static_cast<MT>(mu_t);
  MT rescale_grad = static_cast<MT>(rescale_grad_t);
  auto master_param = master_param_opt.get_ptr();
  if (multi_precision) {
    bool has_master = ((master_param_opt.get_ptr() != nullptr) &&
                       (master_param_out != nullptr));
    PADDLE_ENFORCE_EQ(has_master,
                      true,
                      phi::errors::InvalidArgument(
                          "The Input(MasterParam) and Output(MasterParamOut) "
                          "should not be null when "
                          "the attr `multi_precision` is true"));
  }

  ctx.template Alloc<T>(param_out);
  ctx.template Alloc<MT>(velocity_out);
  const MT* master_in_data =
      multi_precision ? master_param->data<MT>() : nullptr;
  MT* master_out_data =
      multi_precision ? ctx.template Alloc<MT>(master_param_out) : nullptr;
  if (paddle::platform::is_cpu_place(ctx.GetPlace())) {
    CPUDenseMomentumFunctor<MT> functor;
    functor(&param,
            &grad,
            &velocity,
            &learning_rate,
            mu,
            use_nesterov,
            regularization_flag,
            regularization_coeff,
            param_out,
            velocity_out);
  } else if (paddle::platform::is_gpu_place(ctx.GetPlace())) {
    funcs::ForRange<Context> for_range(ctx, param.numel());
#define PADDLE_LAUNCH_DENSE_MOMENTUM_KERNEL(__nesterov, __reg_type) \
  DenseMomentumFunctor<T, MT, __reg_type, __nesterov> functor(      \
      param.data<T>(),                                              \
      grad.data<T>(),                                               \
      velocity.data<MT>(),                                          \
      learning_rate.data<MultiPrecisionType<T>>(),                  \
      master_in_data,                                               \
      mu,                                                           \
      rescale_grad,                                                 \
      param.numel(),                                                \
      regularization_coeff,                                         \
      ctx.template Alloc<T>(param_out),                             \
      ctx.template Alloc<MT>(velocity_out),                         \
      master_out_data);                                             \
  for_range(functor);

    if (use_nesterov) {
      if (regularization_flag == RegularizationType::kL2DECAY) {
        PADDLE_LAUNCH_DENSE_MOMENTUM_KERNEL(UseNesterov,
                                            RegularizationType::kL2DECAY);
      } else {
        PADDLE_LAUNCH_DENSE_MOMENTUM_KERNEL(UseNesterov,
                                            RegularizationType::kNONE);
      }
    } else {
      if (regularization_flag == RegularizationType::kL2DECAY) {
        PADDLE_LAUNCH_DENSE_MOMENTUM_KERNEL(NoNesterov,
                                            RegularizationType::kL2DECAY);
      } else {
        PADDLE_LAUNCH_DENSE_MOMENTUM_KERNEL(NoNesterov,
                                            RegularizationType::kNONE);
      }
    }
  }
}

template <typename T, typename MT, typename Context>
void MomentumSparseImpl(const Context& ctx,
                        const DenseTensor& param,
                        const SelectedRows& grad,
                        const DenseTensor& velocity,
                        const DenseTensor& learning_rate,
502
                        const paddle::optional<DenseTensor>& master_param_opt,
H
hong 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
                        float mu_t,
                        bool use_nesterov,
                        const std::string& regularization_method,
                        float regularization_coeff_t,
                        bool multi_precision,
                        float rescale_grad_t,
                        DenseTensor* param_out,
                        DenseTensor* velocity_out,
                        DenseTensor* master_param_out) {
  MT regularization_coeff = static_cast<MT>(regularization_coeff_t);
  RegularizationType regularization_flag{
      RegularizationType::kNONE};  // disable regularization
  if (regularization_method == "l2_decay") {
    regularization_flag = RegularizationType::kL2DECAY;
  }

  MT mu = static_cast<MT>(mu_t);
  MT rescale_grad = static_cast<MT>(rescale_grad_t);

  auto master_param = master_param_opt.get_ptr();
  if (multi_precision) {
    bool has_master = ((master_param_opt.get_ptr() != nullptr) &&
                       (master_param_out != nullptr));
    PADDLE_ENFORCE_EQ(has_master,
                      true,
                      phi::errors::InvalidArgument(
                          "The Input(MasterParam) and Output(MasterParamOut) "
                          "should not be null when "
                          "the attr `multi_precision` is true"));
  }

  ctx.template Alloc<T>(param_out);
  ctx.template Alloc<MT>(velocity_out);

  const MT* master_in_data =
      multi_precision ? master_param->data<MT>() : nullptr;
  MT* master_out_data =
      multi_precision ? ctx.template Alloc<MT>(master_param_out) : nullptr;

  // sparse update maybe empty.
  if (grad.rows().size() == 0) {
    VLOG(3) << "Grad SelectedRows contains no data!";
    return;
  }

  phi::SelectedRows tmp_merged_grad;
  phi::SelectedRows* merged_grad = &tmp_merged_grad;
550
  phi::funcs::scatter::MergeAdd<Context, T> merge_func;
H
hong 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
  merge_func(ctx, grad, merged_grad);

  auto* grad_merge_rows = merged_grad->mutable_rows();
  paddle::framework::MixVector<int64_t> mixv_grad_merge_rows(grad_merge_rows);
  const int64_t* rows = mixv_grad_merge_rows.Data(ctx.GetPlace());
  int64_t row_numel = merged_grad->value().numel() / merged_grad->rows().size();
  funcs::ForRange<Context> for_range(ctx, param.numel());
  if (use_nesterov) {
    SparseMomentumFunctor<T, MT, UseNesterov> functor(
        param.data<T>(),
        merged_grad->value().data<T>(),
        velocity.data<MT>(),
        learning_rate.data<MultiPrecisionType<MT>>(),
        master_in_data,
        mu,
        rescale_grad,
        rows,
        row_numel,
        static_cast<int64_t>(merged_grad->rows().size()),
        regularization_flag,
        regularization_coeff,
        ctx.template Alloc<T>(param_out),
        ctx.template Alloc<MT>(velocity_out),
        master_out_data);
    for_range(functor);

  } else {
    SparseMomentumFunctor<T, MT, NoNesterov> functor(
        param.data<T>(),
        merged_grad->value().data<T>(),
        velocity.data<MT>(),
        learning_rate.data<MultiPrecisionType<MT>>(),
        master_in_data,
        mu,
        rescale_grad,
        rows,
        row_numel,
        static_cast<int64_t>(merged_grad->rows().size()),
        regularization_flag,
        regularization_coeff,
        ctx.template Alloc<T>(param_out),
        ctx.template Alloc<MT>(velocity_out),
        master_out_data);
    for_range(functor);
  }
}

template <typename T, typename Context>
void MomentumDenseKernel(const Context& dev_ctx,
                         const DenseTensor& param,
                         const DenseTensor& grad,
                         const DenseTensor& velocity,
                         const DenseTensor& learning_rate,
604
                         const paddle::optional<DenseTensor>& master_param,
H
hong 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
                         float mu,
                         bool use_nesterov,
                         const std::string& regularization_method,
                         float regularization_coeff,
                         bool multi_precision,
                         float rescale_grad,
                         DenseTensor* param_out,
                         DenseTensor* velocity_out,
                         DenseTensor* master_param_out) {
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;
  if (multi_precision) {
    MomentumDenseImpl<T, MT>(dev_ctx,
                             param,
                             grad,
                             velocity,
                             learning_rate,
                             master_param,
                             mu,
                             use_nesterov,
                             regularization_method,
                             regularization_coeff,
                             multi_precision,
                             rescale_grad,
                             param_out,
                             velocity_out,
                             master_param_out);
  } else {
    MomentumDenseImpl<T, T>(dev_ctx,
                            param,
                            grad,
                            velocity,
                            learning_rate,
                            master_param,
                            mu,
                            use_nesterov,
                            regularization_method,
                            regularization_coeff,
                            multi_precision,
                            rescale_grad,
                            param_out,
                            velocity_out,
                            master_param_out);
  }
}

template <typename T, typename Context>
void MomentumSparseKernel(const Context& dev_ctx,
                          const DenseTensor& param,
                          const SelectedRows& grad,
                          const DenseTensor& velocity,
                          const DenseTensor& learning_rate,
656
                          const paddle::optional<DenseTensor>& master_param,
H
hong 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
                          float mu,
                          bool use_nesterov,
                          const std::string& regularization_method,
                          float regularization_coeff,
                          bool multi_precision,
                          float rescale_grad,
                          DenseTensor* param_out,
                          DenseTensor* velocity_out,
                          DenseTensor* master_param_out) {
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;
  if (multi_precision) {
    MomentumSparseImpl<T, MT>(dev_ctx,
                              param,
                              grad,
                              velocity,
                              learning_rate,
                              master_param,
                              mu,
                              use_nesterov,
                              regularization_method,
                              regularization_coeff,
                              multi_precision,
                              rescale_grad,
                              param_out,
                              velocity_out,
                              master_param_out);
  } else {
    MomentumSparseImpl<T, T>(dev_ctx,
                             param,
                             grad,
                             velocity,
                             learning_rate,
                             master_param,
                             mu,
                             use_nesterov,
                             regularization_method,
                             regularization_coeff,
                             multi_precision,
                             rescale_grad,
                             param_out,
                             velocity_out,
                             master_param_out);
  }
}

}  // namespace  phi