clip_kernel_impl.h 2.4 KB
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/platform/transform.h"
18 19 20
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/clip_kernel.h"
W
wuyefeilin 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#endif

namespace phi {

template <typename T>
class ClipFunctor {
 public:
  explicit ClipFunctor(const T min, const T max) : min_(min), max_(max) {}
  HOSTDEVICE T operator()(const T x) const {
    return x < min_ ? min_ : x > max_ ? max_ : x;
  }

 private:
  T min_;
  T max_;
};

template <typename T, typename Context>
void ClipKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const Scalar& min,
                const Scalar& max,
                DenseTensor* out) {
  auto max_ = max.to<T>();
  auto min_ = min.to<T>();

  PADDLE_ENFORCE_LE(
      min_,
      max_,
      errors::InvalidArgument("max should be greater than or equal to min. "
                              "But received min = %f, max = %f",
                              static_cast<float>(min_),
                              static_cast<float>(max_)));

  T* out_data = dev_ctx.template Alloc<T>(out);
  // const T* x_data = x->data<T>();
  // int64_t numel = x->numel();
  const T* x_data = x.data<T>();
  int64_t numel = x.numel();
  if (paddle::platform::is_gpu_place(dev_ctx.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
    std::vector<const DenseTensor*> ins = {&x};
    std::vector<DenseTensor*> outs = {out};
    auto functor = ClipFunctor<T>(min_, max_);
    phi::funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
#endif
  } else {
    paddle::platform::Transform<Context> trans;
    trans(
        dev_ctx, x_data, x_data + numel, out_data, ClipFunctor<T>(min_, max_));
  }
}

}  // namespace phi