adagrad_kernel_impl.h 4.3 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include "paddle/phi/kernels/adagrad_kernel.h"
H
hong 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename DeviceContext, typename T>
struct SparseAdagradFunctor {
  void operator()(const DeviceContext& context,
                  const phi::SelectedRows& grad,
                  const DenseTensor& learning_rate,
                  T epsilon,
                  DenseTensor* moment,
                  DenseTensor* param);
};

template <typename DeviceContext, typename T>
phi::SelectedRows SquareSelectedRows(const DeviceContext& context,
                                     const phi::SelectedRows& input) {
  phi::SelectedRows out;
  out.set_rows(input.rows());
  out.set_height(input.height());
  out.mutable_value()->Resize(input.value().dims());
  context.template Alloc<T>(out.mutable_value());
  auto e_out = EigenVector<T>::Flatten(*(out.mutable_value()));
  auto e_in = EigenVector<T>::Flatten(input.value());
  e_out.device(*context.eigen_device()) = e_in.square();
  return out;
}

template <typename T, typename Context>
void AdagradDenseKernel(const Context& ctx,
                        const DenseTensor& param_t,
                        const DenseTensor& grad_t,
                        const DenseTensor& moment_t,
                        const DenseTensor& learning_rate,
                        float epsilon_t,
                        DenseTensor* param_out_tensor,
                        DenseTensor* moment_out_tensor) {
  ctx.template Alloc<T>(param_out_tensor);
  ctx.template Alloc<T>(moment_out_tensor);

  T epsilon = static_cast<T>(epsilon_t);

  auto param = EigenVector<T>::Flatten(param_t);

  auto grad = EigenVector<T>::Flatten(grad_t);

  auto moment = EigenVector<T>::Flatten(moment_t);

  auto param_out = EigenVector<T>::Flatten(*param_out_tensor);
  auto moment_out = EigenVector<T>::Flatten(*moment_out_tensor);
  auto place = *ctx.eigen_device();

  moment_out.device(place) = moment + grad * grad;
  Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
  if (paddle::platform::is_cpu_place(ctx.GetPlace())) {
    auto* lr = learning_rate.data<T>();
    param_out.device(place) =
        param - lr[0] * grad / (moment_out.sqrt() + epsilon);
  } else {
    auto lr = EigenVector<T>::Flatten(learning_rate);
    param_out.device(place) =
        param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
  }
}

template <typename T, typename Context>
void AdagradSparseKernel(const Context& ctx,
                         const DenseTensor& param_t,
                         const SelectedRows& grad_t,
                         const DenseTensor& moment_t,
                         const DenseTensor& learning_rate,
                         float epsilon_t,
                         DenseTensor* param_out,
                         DenseTensor* moment_out) {
  auto* param_out_tensor = param_out;
  auto* moment_out_tensor = moment_out;

  ctx.template Alloc<T>(param_out_tensor);
  ctx.template Alloc<T>(moment_out_tensor);

  T epsilon = static_cast<T>(epsilon_t);

  auto* param_tensor = &param_t;
  PADDLE_ENFORCE_EQ(param_tensor,
                    param_out_tensor,
                    phi::errors::InvalidArgument(
                        "the input tensor not euqal with output tensor"));

  auto* moment_tensor = &moment_t;
  PADDLE_ENFORCE_EQ(moment_tensor,
                    moment_out_tensor,
                    phi::errors::InvalidArgument(
                        "the input moment not eual with output moment"));

  SparseAdagradFunctor<Context, T> functor;
  functor(
      ctx, grad_t, learning_rate, epsilon, moment_out_tensor, param_out_tensor);
}

}  // namespace phi