FirstOrderOptimizer.cpp 11.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "FirstOrderOptimizer.h"
X
Xin Pan 已提交
16
#include "paddle/legacy/math/TrainingAlgorithmOp.h"
X
Xin Pan 已提交
17 18
#include "paddle/legacy/utils/Flags.h"
#include "paddle/legacy/utils/Util.h"
Z
zhangjinchao01 已提交
19 20 21

#include <cmath>

22
DEFINE_bool(log_clipping, false, "enable log clipping or not");
Z
zhangjinchao01 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

namespace paddle {

SparseMomentumParameterOptimizer::SparseMomentumParameterOptimizer(
    const OptimizationConfig& optConfig)
    : ParameterOptimizer(optConfig) {
  addParameterType(PARAMETER_MOMENTUM);
  addParameterType(PARAMETER_MOMENTUM_UT);
  addParameterType(PARAMETER_MOMENTUM_VT);
  alpha_ = 1;
  beta_ = 1;
  tau_ = -1;
  threshold_ = 1e+06;
}

void SparseMomentumParameterOptimizer::init(size_t numRows,
                                            const ParameterConfig* config) {
  isParameterSparse_ = numRows != 0;
  t0Vec_.resize(numRows);
  t0Vec_.assign(t0Vec_.size(), 0);
  timer_ = 0;
  momentum_ = config->momentum();
  decayRate_ = config->decay_rate();
  gamma_ = config->learning_rate();
}

void SparseMomentumParameterOptimizer::startBatch(int64_t numSamplesProcessed) {
  learningRate_ = calcLearningRate(numSamplesProcessed, pass_);
  if (isParameterSparse_) {
    tau_ = tau_ + beta_ / alpha_;
    alpha_ = alpha_ / momentum_;
    beta_ = beta_ / (1 + decayRate_ * gamma_ * learningRate_);
  }
}

void SparseMomentumParameterOptimizer::update(const VectorPtr vecs[],
                                              const ParameterConfig& paraConfig,
                                              size_t sparseId) const {
  if (sparseId != -1LU) {
    CHECK_LT(sparseId, t0Vec_.size());
    if (t0Vec_[sparseId] == 0) {
      vecs[PARAMETER_MOMENTUM_VT]->assign(*vecs[PARAMETER_VALUE]);
      t0Vec_[sparseId] = 1;
    }
    vecs[PARAMETER_MOMENTUM_UT]->add(*vecs[PARAMETER_GRADIENT],
                                     -alpha_ * gamma_ * learningRate_);
    vecs[PARAMETER_MOMENTUM_VT]->add(*vecs[PARAMETER_GRADIENT],
                                     tau_ * alpha_ * gamma_ * learningRate_);
    vecs[PARAMETER_VALUE]->add(*vecs[PARAMETER_MOMENTUM_UT],
                               tau_ / beta_ + 1.0 / alpha_,
73 74
                               *vecs[PARAMETER_MOMENTUM_VT],
                               1.0 / beta_);
Z
zhangjinchao01 已提交
75 76

  } else {
77 78 79 80 81
    vecs[PARAMETER_VALUE]->sgdUpdate(*vecs[PARAMETER_GRADIENT],
                                     *vecs[PARAMETER_MOMENTUM],
                                     learningRate_ * paraConfig.learning_rate(),
                                     paraConfig.momentum(),
                                     applyDecay_ ? paraConfig.decay_rate() : 0);
Z
zhangjinchao01 已提交
82 83 84 85 86 87 88 89 90 91 92 93
  }
}

ParameterOptimizer::TraverseCallback
SparseMomentumParameterOptimizer::needSpecialTraversal(
    const ParameterConfig& config) const {
  if (alpha_ > threshold_ && isParameterSparse_) {
    //  Restart to avoid large value multiplication
    //  1. \alpha = 1, \beta = 1, \tau = 0
    //  2. Note that \tau * u_t + v_t = \beta \theta_t, therefore:
    //     u_t should be rescaled to u_t/alpha_
    //     v_t should be reset to \theta_t
94 95
    return [this](const VectorPtr vecs[],
                  const ParameterConfig& config,
Z
zhangjinchao01 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
                  size_t sparseId) {
      vecs[PARAMETER_MOMENTUM_UT]->divScalar(alpha_);
      vecs[PARAMETER_MOMENTUM_VT]->assign(*vecs[PARAMETER_VALUE]);
    };
  } else {
    return nullptr;
  }
}

void SparseMomentumParameterOptimizer::finishBatch() {
  timer_++;
  if (!isParameterSparse_) return;
  if (alpha_ > threshold_) {
    alpha_ = 1;
    beta_ = 1;
    tau_ = -1;
  }
}

void AdagradParameterOptimizer::update(const VectorPtr vecs[],
                                       const ParameterConfig& config,
                                       size_t sparseId) const {
H
hedaoyuan 已提交
118 119 120 121 122 123 124 125 126 127 128 129
  BaseMatrix& value = *vecs[PARAMETER_VALUE];
  BaseMatrix& grad = *vecs[PARAMETER_GRADIENT];
  BaseMatrix& mom = *vecs[PARAMETER_MOMENTUM];
  BaseMatrix& accum_buffer = *vecs[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& accum = *vecs[PARAMETER_GRADIENT_SQURESUM1];
  BaseMatrix& lr = *vecs[PARAMETER_LEARNING_RATE];

  real epsilon = optConfig_.ada_epsilon();
  real learningRate = learningRate_ * config.learning_rate();
  real momentum = config.momentum();
  real decayRate = applyDecay_ ? config.decay_rate() : 0;

130 131 132 133 134 135 136 137 138 139
  adagradApply(value,
               grad,
               mom,
               accum_buffer,
               accum,
               lr,
               epsilon,
               learningRate,
               momentum,
               decayRate);
Z
zhangjinchao01 已提交
140 141 142 143 144 145 146 147
}

ParameterOptimizer::TraverseCallback
AdagradParameterOptimizer::needSpecialTraversal(
    const ParameterConfig& config) const {
  if (numUpdates_ % kMaxNumAccumulates == 0) {
    // Move the sum to a different buffer to avoid loss of precision
    // due to too many sums.
F
fengjiayi 已提交
148 149 150
    return [](const VectorPtr vecs[],
              const ParameterConfig& config,
              size_t sparseId) {
Z
zhangjinchao01 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163
      vecs[PARAMETER_GRADIENT_SQURESUM]->add(
          *vecs[PARAMETER_GRADIENT_SQURESUM1]);
      vecs[PARAMETER_GRADIENT_SQURESUM1]->zeroMem();
    };
  } else {
    return nullptr;
  }
}

void AdaDeltaParameterOptimizer::update(const VectorPtr vecs[],
                                        const ParameterConfig& config,
                                        size_t sparseId) const {
  CHECK(sparseId == -1LU) << "Sparse update is not supported";
164

H
hedaoyuan 已提交
165 166 167 168 169 170 171 172 173 174 175
  BaseMatrix& value = *vecs[PARAMETER_VALUE];
  BaseMatrix& grad = *vecs[PARAMETER_GRADIENT];
  BaseMatrix& mom = *vecs[PARAMETER_MOMENTUM];
  BaseMatrix& accum = *vecs[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& accum_update = *vecs[PARAMETER_GRADIENT_SQURESUM1];
  BaseMatrix& lr = *vecs[PARAMETER_LEARNING_RATE];

  real learningRate = learningRate_ * config.learning_rate();
  real momentum = config.momentum();
  real decayRate = applyDecay_ ? config.decay_rate() : 0;

176 177 178 179 180 181 182 183 184 185 186
  adadeltaApply(value,
                grad,
                mom,
                accum,
                accum_update,
                lr,
                rou_,
                epsilon_,
                learningRate,
                momentum,
                decayRate);
Z
zhangjinchao01 已提交
187 188 189 190 191
}

void RMSPropParameterOptimizer::update(const VectorPtr vecs[],
                                       const ParameterConfig& config,
                                       size_t sparseId) const {
H
hedaoyuan 已提交
192 193 194 195 196 197
  BaseMatrix& value = *vecs[PARAMETER_VALUE];
  BaseMatrix& grad = *vecs[PARAMETER_GRADIENT];
  BaseMatrix& mom = *vecs[PARAMETER_MOMENTUM];
  BaseMatrix& sum = *vecs[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& sum1 = *vecs[PARAMETER_GRADIENT_SQURESUM1];
  BaseMatrix& lr = *vecs[PARAMETER_LEARNING_RATE];
Z
zhangjinchao01 已提交
198

H
hedaoyuan 已提交
199
  real accumulatedRou = rou_;
Z
zhangjinchao01 已提交
200 201 202 203 204 205 206 207
  bool firstTime = timer_ == 0;
  if (sparseId != -1LU) {
    CHECK_LT(sparseId, t0Vec_.size());
    accumulatedRou = std::pow(rou_, timer_ + 1 - t0Vec_[sparseId]);
    firstTime = t0Vec_[sparseId] == 0;
    t0Vec_[sparseId] = timer_ + 1;
  }

H
hedaoyuan 已提交
208 209 210 211 212
  real epsilon = optConfig_.ada_epsilon();
  real learningRate = learningRate_ * config.learning_rate();
  real momentum = config.momentum();
  real decayRate = applyDecay_ ? config.decay_rate() : 0;

213 214 215 216 217 218 219 220 221 222 223 224 225
  rmspropApply(value,
               grad,
               mom,
               sum,
               sum1,
               lr,
               accumulatedRou,
               rou_,
               epsilon,
               learningRate,
               momentum,
               decayRate,
               firstTime);
Z
zhangjinchao01 已提交
226 227 228 229 230
}

void DecayedAdagradParameterOptimizer::update(const VectorPtr vecs[],
                                              const ParameterConfig& config,
                                              size_t sparseId) const {
H
hedaoyuan 已提交
231 232 233 234 235
  BaseMatrix& value = *vecs[PARAMETER_VALUE];
  BaseMatrix& grad = *vecs[PARAMETER_GRADIENT];
  BaseMatrix& mom = *vecs[PARAMETER_MOMENTUM];
  BaseMatrix& sum = *vecs[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& lr = *vecs[PARAMETER_LEARNING_RATE];
Z
zhangjinchao01 已提交
236

H
hedaoyuan 已提交
237
  real accumulatedRou = rou_;
Z
zhangjinchao01 已提交
238 239 240 241 242 243 244 245
  bool firstTime = timer_ == 0;
  if (sparseId != -1LU) {
    CHECK_LT(sparseId, t0Vec_.size());
    accumulatedRou = std::pow(rou_, timer_ + 1 - t0Vec_[sparseId]);
    firstTime = t0Vec_[sparseId] == 0;
    t0Vec_[sparseId] = timer_ + 1;
  }

H
hedaoyuan 已提交
246 247 248 249 250
  real epsilon = optConfig_.ada_epsilon();
  real learningRate = learningRate_ * config.learning_rate();
  real momentum = config.momentum();
  real decayRate = applyDecay_ ? config.decay_rate() : 0;

251 252 253 254 255 256 257 258 259 260 261 262
  decayedAdagradApply(value,
                      grad,
                      mom,
                      sum,
                      lr,
                      accumulatedRou,
                      rou_,
                      epsilon,
                      learningRate,
                      momentum,
                      decayRate,
                      firstTime);
Z
zhangjinchao01 已提交
263 264 265 266 267 268
}

void AdamParameterOptimizer::update(const VectorPtr vecs[],
                                    const ParameterConfig& config,
                                    size_t sparseId) const {
  CHECK(sparseId == -1UL) << "Sparse update is not supported";
269

H
hedaoyuan 已提交
270 271 272 273 274 275 276 277 278
  real beta1_power = std::pow(beta1_, step_);
  real beta2_power = std::pow(beta2_, step_);
  real learningRate = config.learning_rate() * learningRate_;

  BaseMatrix& value = *vecs[PARAMETER_VALUE];
  BaseMatrix& grad = *vecs[PARAMETER_GRADIENT];
  BaseMatrix& mom = *vecs[PARAMETER_MOMENTUM];
  BaseMatrix& v = *vecs[PARAMETER_SECOND_MOMENTUM];

279 280 281 282 283 284 285 286 287 288
  adamApply(value,
            grad,
            mom,
            v,
            beta1_,
            beta2_,
            beta1_power,
            beta2_power,
            epsilon_,
            learningRate);
Z
zhangjinchao01 已提交
289 290 291 292 293 294
}

void AdamaxParameterOptimizer::update(const VectorPtr vecs[],
                                      const ParameterConfig& config,
                                      size_t sparseId) const {
  CHECK(sparseId == -1UL) << "Sparse update is not supported";
H
hedaoyuan 已提交
295
  real learningRate = config.learning_rate() * learningRate_;
Z
zhangjinchao01 已提交
296

H
hedaoyuan 已提交
297 298 299 300
  BaseMatrix& value = *vecs[PARAMETER_VALUE];
  BaseMatrix& grad = *vecs[PARAMETER_GRADIENT];
  BaseMatrix& mom = *vecs[PARAMETER_MOMENTUM];
  BaseMatrix& u = *vecs[PARAMETER_WEIGHTED_INFINITY_NORM];
Z
zhangjinchao01 已提交
301

302
  adamaxApply(value, grad, mom, u, beta1_, beta2_, step_, learningRate);
Z
zhangjinchao01 已提交
303 304 305 306 307
}

void OptimizerWithGradientClipping::update(const VectorPtr vecs[],
                                           const ParameterConfig& config,
                                           size_t sparseId) const {
Y
Yibing Liu 已提交
308 309
  real globalThreshold = optConfig_.gradient_clipping_threshold();
  real localThreshold = config.gradient_clipping_threshold();
310

Y
Yibing Liu 已提交
311 312
  // Use local gradient clipping threshold if it's enabled,
  // otherwise using the global one.
Y
Yibing Liu 已提交
313 314
  real threshold = localThreshold > 0.0f ? localThreshold : globalThreshold;
  std::string field = localThreshold > 0.0f ? "local" : "global";
315

Z
zhangjinchao01 已提交
316
  real maxAbsGrad = vecs[PARAMETER_GRADIENT]->getAbsMax();
317
  if (maxAbsGrad > threshold) {
Z
zhangjinchao01 已提交
318 319 320
    if (FLAGS_log_clipping) {
      real avgAbsGrad = vecs[PARAMETER_GRADIENT]->getAbsSum() /
                        vecs[PARAMETER_GRADIENT]->getSize();
321 322 323
      LOG(INFO) << "parameter=" << config.name() << " need clipping by "
                << field << " threshold=" << threshold
                << ", max grad=" << maxAbsGrad << ", avg grad=" << avgAbsGrad;
Z
zhangjinchao01 已提交
324
    }
325
    vecs[PARAMETER_GRADIENT]->clip(-threshold, threshold);
Z
zhangjinchao01 已提交
326 327 328 329 330
  }
  optimizer_->update(vecs, config, sparseId);
}

}  // namespace paddle