SparseMatrix.cpp 27.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "SparseMatrix.h"
Z
zhangjinchao01 已提交
16
#include <algorithm>
Y
Yu Yang 已提交
17
#include <iostream>
Z
zhangjinchao01 已提交
18 19 20
#include <vector>
#include "hl_gpu.h"
#include "hl_top_k.h"
X
Xin Pan 已提交
21
#include "paddle/legacy/utils/Util.h"
Z
zhangjinchao01 已提交
22 23 24

namespace paddle {

25 26 27 28 29
GpuSparseMatrix::GpuSparseMatrix(size_t height,
                                 size_t width,
                                 size_t nnz,
                                 SparseValueType valueType,
                                 SparseFormat format,
Z
zhangjinchao01 已提交
30 31 32 33 34 35
                                 bool trans)
    : Matrix(NULL, height, width, trans, true) {
  resize(height, width, nnz, valueType, format);
}

GpuSparseMatrix::GpuSparseMatrix(GpuMemHandlePtr dataHandle,
36 37 38 39 40 41 42 43
                                 hl_sparse_matrix_s_ptr sMatrix,
                                 size_t height,
                                 size_t width,
                                 size_t nnz,
                                 SparseValueType valueType,
                                 SparseFormat format,
                                 bool trans,
                                 MemoryHandlePtr sMemoryHandle)
Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    : Matrix(dataHandle, height, width, trans, true) {
  CHECK(dataHandle && sMatrix) << "Invalid argument pointer";

  size_t size = 0;
  if (format == SPARSE_CSR) {
    size = (height + 1) * sizeof(int) + nnz * sizeof(int);
  } else {
    size = (width + 1) * sizeof(int) + nnz * sizeof(int);
  }

  if (NO_VALUE != valueType) {
    size += nnz * sizeof(real);
  }
  CHECK_LE(size, dataHandle->getSize());

  sMatrix_ = sMatrix;

  if (sMemoryHandle == NULL) {
    sMemoryHandle_ = std::make_shared<CpuMemoryHandle>(dataHandle->getSize());
  } else {
    CHECK_EQ(sMemoryHandle->getSize(), dataHandle->getSize());
    sMemoryHandle_ = sMemoryHandle;
  }

  elementCnt_ = nnz;
  valueType_ = valueType;
  format_ = format;
  if (format_ == SPARSE_CSR)
    sparseResizeCSR();
  else
    sparseResizeCSC();
}

77 78 79 80 81 82 83 84
GpuSparseMatrix::GpuSparseMatrix(hl_sparse_matrix_s_ptr sMatrix,
                                 size_t height,
                                 size_t width,
                                 size_t nnz,
                                 SparseValueType valueType,
                                 SparseFormat format,
                                 bool trans,
                                 MemoryHandlePtr sMemoryHandle)
Z
zhangjinchao01 已提交
85 86 87 88 89 90 91 92 93
    : Matrix(NULL, height, width, trans, true) {
  CHECK(sMatrix) << "Invalid argument pointer";
  sMatrix_ = sMatrix;
  sMemoryHandle_ = sMemoryHandle;
  elementCnt_ = nnz;
  format_ = format;
  valueType_ = valueType;
}

94 95 96 97 98 99 100 101
GpuSparseMatrix::GpuSparseMatrix(real* value,
                                 int* rows,
                                 int* cols,
                                 size_t height,
                                 size_t width,
                                 size_t nnz,
                                 SparseValueType valueType,
                                 SparseFormat format,
Z
zhangjinchao01 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
                                 bool trans)
    : Matrix(NULL, height, width, trans, true) {
  size_t size = 0;
  if (format == SPARSE_CSR) {
    size = (height + 1) * sizeof(int) + nnz * sizeof(int);
  } else {
    size = (width + 1) * sizeof(int) + nnz * sizeof(int);
  }

  if (NO_VALUE != valueType) {
    size += nnz * sizeof(real);
  }
  elementCnt_ = nnz;
  valueType_ = valueType;
  format_ = format;

  sMemoryHandle_ = std::make_shared<CpuMemoryHandle>(size);
  if (format_ == SPARSE_CSR) {
    rows_ = reinterpret_cast<int*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()));
    cols_ = reinterpret_cast<int*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
        (height_ + 1) * sizeof(int));
    if (NO_VALUE != valueType_) {
      value_ = reinterpret_cast<real*>(
          reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
          (height_ + 1) * sizeof(int) + elementCnt_ * sizeof(int));
    } else {
      value_ = NULL;
    }

    if (sMatrix_ == NULL) {
      /* construct hl_sparse_matrix_s */
      hl_sparse_matrix_s tmp;
      hl_construct_sparse_matrix(
137 138 139 140 141 142 143 144 145
          &tmp,
          value,
          rows,
          cols,
          HL_SPARSE_CSR,
          valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE,
          height_,
          width_,
          elementCnt_);
Z
zhangjinchao01 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
      hl_sparse_matrix_s_ptr tmp2(tmp, hl_destruct_sparse_matrix);
      sMatrix_ = tmp2;
    }

  } else {
    cols_ = reinterpret_cast<int*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()));
    rows_ = reinterpret_cast<int*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
        (width_ + 1) * sizeof(int));
    if (NO_VALUE != valueType_) {
      value_ = reinterpret_cast<real*>(
          reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
          (width_ + 1) * sizeof(int) + elementCnt_ * sizeof(int));
    } else {
      value_ = NULL;
    }

    if (sMatrix_ == NULL) {
      /* construct hl_sparse_matrix_s */
      hl_sparse_matrix_s tmp;
      hl_construct_sparse_matrix(
168 169 170 171 172 173 174 175 176
          &tmp,
          value,
          rows,
          cols,
          HL_SPARSE_CSC,
          valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE,
          height_,
          width_,
          elementCnt_);
Z
zhangjinchao01 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      hl_sparse_matrix_s_ptr tmp2(tmp, hl_destruct_sparse_matrix);
      sMatrix_ = tmp2;
    }
  }
}

void GpuSparseMatrix::sparseResizeCSR() {
  rows_ =
      reinterpret_cast<int*>(reinterpret_cast<char*>(sMemoryHandle_->getBuf()));
  cols_ =
      reinterpret_cast<int*>(reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
                             (height_ + 1) * sizeof(int));
  if (NO_VALUE != valueType_) {
    value_ = reinterpret_cast<real*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
        (height_ + 1) * sizeof(int) + elementCnt_ * sizeof(int));
  } else {
    value_ = NULL;
  }

  if (sMatrix_ == NULL) {
    /* construct hl_sparse_matrix_s */
    hl_sparse_matrix_s tmp;
    hl_construct_sparse_matrix(
201 202 203 204 205 206 207
        &tmp,
        data_,
        memoryHandle_->getSize(),
        HL_SPARSE_CSR,
        valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE,
        height_,
        width_,
Z
zhangjinchao01 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        elementCnt_);
    hl_sparse_matrix_s_ptr tmp2(tmp, hl_destruct_sparse_matrix);
    sMatrix_ = tmp2;
  }
}

void GpuSparseMatrix::sparseResizeCSC() {
  cols_ =
      reinterpret_cast<int*>(reinterpret_cast<char*>(sMemoryHandle_->getBuf()));
  rows_ =
      reinterpret_cast<int*>(reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
                             (width_ + 1) * sizeof(int));
  if (NO_VALUE != valueType_) {
    value_ = reinterpret_cast<real*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
        (width_ + 1) * sizeof(int) + elementCnt_ * sizeof(int));
  } else {
    value_ = NULL;
  }

  if (sMatrix_ == NULL) {
    /* construct hl_sparse_matrix_s */
    hl_sparse_matrix_s tmp;
    hl_construct_sparse_matrix(
232 233 234 235 236 237 238
        &tmp,
        memoryHandle_->getBuf(),
        memoryHandle_->getSize(),
        HL_SPARSE_CSC,
        valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE,
        height_,
        width_,
Z
zhangjinchao01 已提交
239 240 241 242 243 244
        elementCnt_);
    hl_sparse_matrix_s_ptr tmp2(tmp, hl_destruct_sparse_matrix);
    sMatrix_ = tmp2;
  }
}

245 246 247 248 249
void GpuSparseMatrix::resize(size_t newHeight,
                             size_t newWidth,
                             size_t newNnz,
                             SparseValueType valueType,
                             SparseFormat format) {
Z
zhangjinchao01 已提交
250 251 252 253 254 255 256
  if (format == SPARSE_CSR) {
    resizeCSR(newHeight, newWidth, newNnz, valueType);
  } else {
    resizeCSC(newHeight, newWidth, newNnz, valueType);
  }
}

257 258 259 260
void GpuSparseMatrix::resizeCSR(size_t newHeight,
                                size_t newWidth,
                                size_t newNnz,
                                SparseValueType valueType) {
Z
zhangjinchao01 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
  size_t newSize = (newHeight + 1) * sizeof(int) + newNnz * sizeof(int);
  if (NO_VALUE != valueType) {
    newSize += newNnz * sizeof(real);
  }

  if (NULL == memoryHandle_.get() || newSize > memoryHandle_->getSize()) {
    memoryHandle_ = std::make_shared<GpuMemoryHandle>(newSize);
    data_ = reinterpret_cast<real*>(memoryHandle_->getBuf());
    sMemoryHandle_ = std::make_shared<CpuMemoryHandle>(newSize);
    end_ = reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
           sMemoryHandle_->getSize();
    sMatrix_ = NULL;
  } else if (valueType != valueType_) {
    sMatrix_ = NULL;
  } else {
    /*
     * newNnz > elementCnt_ is necessary for the following condition:
     * Firstly, height_ is 9 elementCnt_ is 56
     * Secondly, height_ is 11 elementCnt_ is 44
     *   ==> height_ is bigger, sMatrix_ will resize, and total item is 44 now
     * Then, height_ is 10 elementCnt_ is 52
     *   ==> Without newNnz > elementCnt_ condition, sMatrix_ will fail
     */
    if ((ssize_t)((newHeight + 1) * sizeof(int)) >
            ((char*)cols_ - (char*)rows_) ||
        newNnz > static_cast<size_t>(sMatrix_->nnz)) {
      sMatrix_ = NULL;
    } else if (NO_VALUE == valueType) {
      if ((ssize_t)(newNnz * sizeof(int)) > (end_ - (char*)cols_)) {
        sMatrix_ = NULL;
      }
    } else {
      if ((ssize_t)(newNnz * sizeof(int)) > ((char*)value_ - (char*)cols_) ||
          (ssize_t)(newNnz * sizeof(real)) > (end_ - (char*)value_)) {
        sMatrix_ = NULL;
      }
    }
  }

  height_ = newHeight;
  width_ = newWidth;
  elementCnt_ = newNnz;
  valueType_ = valueType;
  format_ = SPARSE_CSR;

  if (sMatrix_ == NULL) {
    sparseResizeCSR();
  }
}

311 312 313 314
void GpuSparseMatrix::resizeCSC(size_t newHeight,
                                size_t newWidth,
                                size_t newNnz,
                                SparseValueType valueType) {
Z
zhangjinchao01 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  size_t newSize = (newWidth + 1) * sizeof(int) + newNnz * sizeof(int);
  if (NO_VALUE != valueType) {
    newSize += newNnz * sizeof(real);
  }

  if (NULL == memoryHandle_.get() || newSize > memoryHandle_->getSize()) {
    memoryHandle_ = std::make_shared<GpuMemoryHandle>(newSize);
    data_ = reinterpret_cast<real*>(memoryHandle_->getBuf());
    sMemoryHandle_ = std::make_shared<CpuMemoryHandle>(newSize);
    end_ = reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
           sMemoryHandle_->getSize();
    sMatrix_ = NULL;
  } else if (valueType != valueType_) {
    sMatrix_ = NULL;
  } else {
    /*
     * newNnz > elementCnt_ is necessary for the following condition:
     * Firstly, height_ is 9 elementCnt_ is 56
     * Secondly, height_ is 11 elementCnt_ is 44
     *   ==> height_ is bigger, sMatrix_ will resize,
     *       and total item is 44 now
     * Then, height_ is 10 elementCnt_ is 52
     *   ==> Without newNnz > elementCnt_ condition, sMatrix_ will fail
     */
    if ((ssize_t)((newWidth + 1) * sizeof(int)) >
            ((char*)rows_ - (char*)cols_) ||
        newNnz > static_cast<size_t>(sMatrix_->nnz)) {
      sMatrix_ = NULL;
    } else if (NO_VALUE == valueType) {
      if ((ssize_t)(newNnz * sizeof(int)) > (end_ - (char*)rows_)) {
        sMatrix_ = NULL;
      }
    } else {
      if ((ssize_t)(newNnz * sizeof(int)) > ((char*)value_ - (char*)rows_) ||
          (ssize_t)(newNnz * sizeof(real)) > (end_ - (char*)value_)) {
        sMatrix_ = NULL;
      }
    }
  }

  height_ = newHeight;
  width_ = newWidth;
  elementCnt_ = newNnz;
  valueType_ = valueType;
  format_ = SPARSE_CSC;

  if (sMatrix_ == NULL) {
    sparseResizeCSC();
  }
}

void GpuSparseMatrix::resize(size_t newHeight, size_t newWidth) {
  resize(newHeight, newWidth, elementCnt_, valueType_, format_);
}

MatrixPtr GpuSparseMatrix::getTranspose() {
  CHECK(memoryHandle_.get() || sMatrix_) << "not supported";
  if (memoryHandle_.get()) {
    MatrixPtr copy_T(new GpuSparseMatrix(
374 375 376 377 378 379 380 381
        std::dynamic_pointer_cast<GpuMemoryHandle>(memoryHandle_),
        sMatrix_,
        height_,
        width_,
        elementCnt_,
        valueType_,
        format_,
        true,
Z
zhangjinchao01 已提交
382 383 384
        sMemoryHandle_));
    return copy_T;
  } else {
385 386 387 388 389 390 391
    MatrixPtr copy_T(new GpuSparseMatrix(sMatrix_,
                                         height_,
                                         width_,
                                         elementCnt_,
                                         valueType_,
                                         format_,
                                         true,
Z
zhangjinchao01 已提交
392 393 394 395 396
                                         sMemoryHandle_));
    return copy_T;
  }
}

397 398
void GpuSparseMatrix::copyRow(int offsets,
                              size_t colNum,
Z
zhangjinchao01 已提交
399 400 401 402
                              const sparse_non_value_t* row) {
  memcpy(cols_ + offsets, row, sizeof(int) * colNum);
}

403 404
void GpuSparseMatrix::copyRow(int offsets,
                              size_t colNum,
Z
zhangjinchao01 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
                              const sparse_float_value_t* row) {
  for (size_t j = 0; j < colNum; j++) {
    cols_[offsets + j] = row[j].col;
    value_[offsets + j] = row[j].value;
  }
}

void GpuSparseMatrix::copyFrom(const Matrix& src, hl_stream_t stream) {
  if (auto mat = dynamic_cast<const CpuSparseMatrix*>(&src)) {
    copyFrom(*(const_cast<CpuSparseMatrix*>(mat)), stream);
  } else if (auto mat = dynamic_cast<const GpuSparseMatrix*>(&src)) {
    copyFrom(*(const_cast<GpuSparseMatrix*>(mat)), stream);
  } else {
    LOG(FATAL) << "Not implemented";
  }
}

void GpuSparseMatrix::copyFrom(const Matrix& src) {
  copyFrom(src, HPPL_STREAM_1);
  hl_stream_synchronize(HPPL_STREAM_1);
}

template <class T>
428 429 430
void GpuSparseMatrix::copyFrom(int64_t* ids,
                               int64_t* indices,
                               T* data,
Z
zhangjinchao01 已提交
431 432 433 434 435 436 437 438
                               hl_stream_t stream) {
  CHECK_EQ(format_, SPARSE_CSR);
  size_t nnz = 0;
  for (size_t i = 0; i < height_; i++) {
    int64_t id = ids[i];
    nnz += indices[id + 1] - indices[id];
  }

439 440 441
  resize(height_,
         width_,
         nnz,
Z
zhangjinchao01 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
         sizeof(T) == sizeof(sparse_non_value_t) ? NO_VALUE : FLOAT_VALUE,
         format_);

  rows_[0] = 0;
  for (size_t i = 0; i < height_; i++) {
    int64_t id = ids[i];
    size_t colNum = indices[id + 1] - indices[id];
    rows_[i + 1] = rows_[i] + colNum;

    T* row = data + indices[id];
    copyRow(rows_[i], colNum, row);
  }

  sMatrix_->format = HL_SPARSE_CSR;
  sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
  sMatrix_->rows = height_;
  sMatrix_->cols = width_;
  sMatrix_->nnz = nnz;
  hl_memcpy_csr_matrix(sMatrix_.get(), value_, rows_, cols_, stream);
}

463 464 465 466
void GpuSparseMatrix::setRow(size_t row,
                             size_t colNum,
                             const unsigned int* cols,
                             const real* values) {
Z
zhangjinchao01 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
  CHECK_EQ(format_, SPARSE_CSR);
  if (NO_VALUE == valueType_) {
    CHECK_LT(row, height_);
    CHECK(NULL != cols);
    CHECK(NULL == values);
  } else {
    CHECK_LT(row, height_);
    CHECK(NULL != cols);
    CHECK(NULL != values);
  }
  if (0 == row) {
    rows_[row] = 0;
  }
  rows_[row + 1] = rows_[row] + colNum;

  memcpy(cols_ + rows_[row], cols, sizeof(*cols) * colNum);
  if (FLOAT_VALUE == valueType_) {
    memcpy(value_ + rows_[row], values, sizeof(*values) * colNum);
  }

  if (height_ - 1 == row) {
    sMatrix_->format = HL_SPARSE_CSR;
    sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
    sMatrix_->rows = height_;
    sMatrix_->cols = width_;
    sMatrix_->nnz = elementCnt_;
493 494
    hl_memcpy_csr_matrix(
        sMatrix_.get(), value_, rows_, cols_, HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
495 496 497 498 499
  }
}

SparseValueType GpuSparseMatrix::getValueType() const { return valueType_; }

500
void GpuSparseMatrix::transpose(MatrixPtr& matTrans, bool memAlloc) {
Z
zhangjinchao01 已提交
501 502 503
  CHECK_EQ(format_, SPARSE_CSC);
  int nnz = sMatrix_->nnz;
  if (memAlloc) {
504 505
    matTrans = std::make_shared<GpuSparseMatrix>(
        width_, height_, nnz, valueType_, format_, false);
Z
zhangjinchao01 已提交
506 507 508 509 510 511 512 513 514
  } else {
    CHECK(matTrans != nullptr);
  }

  CpuIVector rows(nnz);
  CpuIVector cols(width_ + 1);
  CpuIVector cols_full(nnz);
  CpuVector value(nnz);
  hl_stream_t stream = HPPL_STREAM_1;
515 516 517 518 519 520 521 522
  hl_memcpy_from_csc_matrix(value.getData(),
                            nnz,
                            rows.getData(),
                            nnz,
                            cols.getData(),
                            width_ + 1,
                            sMatrix_.get(),
                            stream);
Z
zhangjinchao01 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535

  hl_stream_synchronize(stream);

  /*for every non zero number, get its column index*/
  std::vector<Element> dataVec;
  for (size_t i = 0; i < width_; i++) {
    for (int j = cols.getData()[i]; j < cols.getData()[i + 1]; j++) {
      cols_full.getData()[j] = i;
    }
  }

  /*sort row index and column index by the ascending order*/
  for (int i = 0; i < nnz; i++) {
536 537
    dataVec.emplace_back(
        rows.getData()[i], cols_full.getData()[i], value.getData()[i]);
Z
zhangjinchao01 已提交
538
  }
Y
Yu Yang 已提交
539 540 541
  std::sort(dataVec.begin(), dataVec.end(), [](Element a, Element b) {
    return a.row < b.row || (a.row == b.row && a.col < b.col);
  });
Z
zhangjinchao01 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

  /*get sorted data, row index, and col index, put them in the right place*/
  cols.resize(height_ + 1);
  rows.resize(nnz);
  value.resize(nnz);

  cols.getData()[0] = 0;
  rows.getData()[0] = dataVec[0].col;
  value.getData()[0] = dataVec[0].val;
  for (int i = 1; i < nnz; i++) {
    if (dataVec[i].row != dataVec[i - 1].row) {
      for (int j = dataVec[i - 1].row + 1; j <= dataVec[i].row; j++) {
        cols.getData()[j] = i;
      }
    }
    rows.getData()[i] = dataVec[i].col;
    value.getData()[i] = dataVec[i].val;
  }
  cols.getData()[height_] = nnz;

  /*copy back from cpu*/
  GpuSparseMatrixPtr dest =
      std::dynamic_pointer_cast<GpuSparseMatrix>(matTrans);
565 566 567 568 569
  hl_memcpy_csc_matrix((dest->sMatrix_).get(),
                       value.getData(),
                       rows.getData(),
                       cols.getData(),
                       stream);
Z
zhangjinchao01 已提交
570 571 572
  hl_stream_synchronize(stream);
}

573 574
void GpuSparseMatrix::mul(const GpuMatrix& a,
                          const GpuMatrix& b,
575 576
                          real scaleAB,
                          real scaleT) {
577
  CHECK(a.useGpu_ && b.useGpu_) << "type not match";
Z
zhangjinchao01 已提交
578
  CHECK(!trans_) << "trans not supported";
579 580
  real* A_d = (real*)a.getData();
  real* B_d = (real*)b.getData();
Z
zhangjinchao01 已提交
581
  hl_sparse_matrix_s C_d = sMatrix_.get();
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
  hl_trans_op_t a_trans = a.trans_ ? HPPL_OP_T : HPPL_OP_N;
  hl_trans_op_t b_trans = b.trans_ ? HPPL_OP_T : HPPL_OP_N;

  if (!a.trans_ && !b.trans_) {
    CHECK(height_ == a.getHeight());
    CHECK(width_ == b.getWidth());
    CHECK(a.getWidth() == b.getHeight());
  } else if (a.trans_ && !b.trans_) {
    CHECK(height_ == a.getWidth());
    CHECK(width_ == b.getWidth());
    CHECK(a.getHeight() == b.getHeight());
  } else if (!a.trans_ && b.trans_) {
    CHECK(height_ == a.getHeight());
    CHECK(width_ == b.getHeight());
    CHECK(a.getWidth() == b.getWidth());
Z
zhangjinchao01 已提交
597 598 599 600 601
  } else {
    LOG(INFO) << "Not support";
  }
  int dimM = height_;
  int dimN = width_;
602
  int dimK = !b.trans_ ? b.getHeight() : b.getWidth();
603 604
  hl_sparse_matrix_mul(
      A_d, a_trans, B_d, b_trans, C_d, dimM, dimN, dimK, scaleAB, scaleT);
Z
zhangjinchao01 已提交
605 606
}

607 608
void GpuSparseMatrix::mul(const Matrix& a,
                          const Matrix& b,
609
                          real scaleAB,
Z
zhangjinchao01 已提交
610
                          real scaleT) {
611 612 613 614
  const auto a_ptr = dynamic_cast<const GpuMatrix*>(&a);
  const auto b_ptr = dynamic_cast<const GpuMatrix*>(&b);
  if (a_ptr && b_ptr) {
    mul(*a_ptr, *b_ptr, scaleAB, scaleT);
Z
zhangjinchao01 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
  } else {
    LOG(FATAL) << "not supported";
  }
}

template <class T>
void printBuf(std::ostream& os, T* a, size_t len, const char* name) {
  os << "\n: " << name << " [";
  for (size_t i = 0; i < len; i++) {
    os << a[i] << " ";
  }
  os << "]\n";
}

void GpuSparseMatrix::print(std::ostream& os) const {
  if (format_ == SPARSE_CSC) {
    int nnz = sMatrix_->nnz;
    IVectorPtr rows = IVector::create(nnz, false);
    IVectorPtr cols = IVector::create(width_ + 1, false);
    VectorPtr value = Vector::create(nnz, false);
    hl_stream_t stream = HPPL_STREAM_DEFAULT;
636 637 638 639 640 641 642 643
    hl_memcpy_from_csc_matrix(value->getData(),
                              value->getSize(),
                              rows->getData(),
                              rows->getSize(),
                              cols->getData(),
                              cols->getSize(),
                              sMatrix_.get(),
                              stream);
Z
zhangjinchao01 已提交
644 645 646 647 648 649 650 651 652 653 654 655
    hl_stream_synchronize(stream);

    printBuf(os, cols->getData(), width_ + 1, "col idx");
    printBuf(os, rows->getData(), elementCnt_, "row idx");
    printBuf(os, value->getData(), elementCnt_, "value");
  }
}

void GpuSparseMatrix::copyFromCSR(CpuSparseMatrix& src, hl_stream_t stream) {
  trans_ = src.trans_;
  size_t nnz = src.getElementCnt();

656
  resize(src.getHeight(), src.getWidth(), nnz, valueType_, src.getFormat());
Z
zhangjinchao01 已提交
657 658
  // if have different value type, only copy rows and cols
  SparseValueType vType =
659
      valueType_ != src.getValueType() ? NO_VALUE : valueType_;
Z
zhangjinchao01 已提交
660 661 662 663 664 665 666 667 668

  sMatrix_->format = HL_SPARSE_CSR;
  sMatrix_->type = vType == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
  sMatrix_->rows = height_;
  sMatrix_->cols = width_;
  sMatrix_->nnz = nnz;

  hl_memcpy_csr_matrix(sMatrix_.get(),
                       vType == NO_VALUE ? NULL : src.getValue(),
669 670 671
                       src.getRows(),
                       src.getCols(),
                       stream);
Z
zhangjinchao01 已提交
672 673 674 675 676 677 678 679 680

  // restore type of sMatrix_
  sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
}

void GpuSparseMatrix::copyFromCSC(CpuSparseMatrix& src, hl_stream_t stream) {
  trans_ = src.trans_;
  size_t nnz = src.getElementCnt();

681
  resize(src.getHeight(), src.getWidth(), nnz, valueType_, src.getFormat());
Z
zhangjinchao01 已提交
682 683 684

  // if have different value type, only copy rows and cols
  SparseValueType vType =
685
      valueType_ != src.getValueType() ? NO_VALUE : valueType_;
Z
zhangjinchao01 已提交
686 687 688 689 690 691 692 693 694

  sMatrix_->format = HL_SPARSE_CSC;
  sMatrix_->type = vType == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
  sMatrix_->rows = height_;
  sMatrix_->cols = width_;
  sMatrix_->nnz = nnz;

  hl_memcpy_csc_matrix(sMatrix_.get(),
                       vType == NO_VALUE ? NULL : src.getValue(),
695 696 697
                       src.getRows(),
                       src.getCols(),
                       stream);
Z
zhangjinchao01 已提交
698 699 700 701 702 703 704 705

  // restore type of sMatrix_
  sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
}

void GpuSparseMatrix::copyFrom(GpuSparseMatrix& src, hl_stream_t stream) {
  CHECK(trans_ == src.trans_);
  CHECK(format_ == src.getFormat());
706 707 708 709
  resize(src.getHeight(),
         src.getWidth(),
         elementCnt_,
         valueType_,
Z
zhangjinchao01 已提交
710 711 712 713 714 715
         src.getFormat());

  size_t rowSize = format_ == SPARSE_CSC ? elementCnt_ : height_ + 1;
  size_t colSize = format_ == SPARSE_CSC ? width_ + 1 : elementCnt_;

  if (valueType_ == FLOAT_VALUE && src.getValueType() == FLOAT_VALUE) {
716 717
    hl_memcpy_async(
        getValue(), src.getValue(), sizeof(real) * elementCnt_, stream);
Z
zhangjinchao01 已提交
718 719 720 721
  }
  CHECK(getRows());
  CHECK(src.getRows());

722 723
  hl_memcpy_async(getRows(), src.getRows(), sizeof(int) * rowSize, stream);
  hl_memcpy_async(getCols(), src.getCols(), sizeof(int) * colSize, stream);
Z
zhangjinchao01 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736
}

void GpuSparseMatrix::copyFrom(CpuSparseMatrix& src, hl_stream_t stream) {
  if (format_ == SPARSE_CSR) {
    copyFromCSR(src, stream);
  } else {
    copyFromCSC(src, stream);
  }
}

void GpuSparseMatrix::trimFromCSR(const CpuSparseMatrix& src) {
  trans_ = src.trans_;
  int* srcCols = src.getCols();
737 738
  size_t nnz = std::count_if(srcCols,
                             srcCols + src.getElementCnt(),
Z
zhangjinchao01 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
                             [this](size_t n) { return n < this->width_; });
  resize(height_, width_, nnz, valueType_, format_);

  rows_[0] = 0;
  size_t index = 0;
  for (size_t r = 0; r < height_; ++r) {
    for (int i = src.getRows()[r]; i < src.getRows()[r + 1]; ++i) {
      if (srcCols[i] < (int)width_) {
        cols_[index] = srcCols[i];
        if (valueType_ == FLOAT_VALUE) {
          value_[index] = src.getValue()[i];
        }
        ++index;
      }
    }
    rows_[r + 1] = index;
  }
  CHECK_EQ(index, nnz);

  sMatrix_->format = HL_SPARSE_CSR;
  sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
  sMatrix_->rows = height_;
  sMatrix_->cols = width_;
  sMatrix_->nnz = nnz;

764 765 766 767 768
  hl_memcpy_csr_matrix(sMatrix_.get(),
                       valueType_ == NO_VALUE ? NULL : value_,
                       rows_,
                       cols_,
                       /*default stream = */ HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
}

void GpuSparseMatrix::trimFromCSC(const CpuSparseMatrix& src) {
  trans_ = src.trans_;
  size_t nnz = src.getCols()[width_] - src.getCols()[0];
  resize(height_, width_, nnz, valueType_, format_);

  cols_[0] = 0;
  for (size_t i = 0; i < width_; i++) {
    cols_[i + 1] = cols_[i] + (int)(src.getRowNum(i));
  }
  memcpy(rows_, src.getRows() + src.getCols()[0], sizeof(int) * nnz);
  if (valueType_ == FLOAT_VALUE) {
    memcpy(value_, src.getValue() + src.getCols()[0], sizeof(real) * nnz);
  }

  sMatrix_->format = HL_SPARSE_CSC;
  sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
  sMatrix_->rows = height_;
  sMatrix_->cols = width_;
  sMatrix_->nnz = nnz;

791 792 793 794 795
  hl_memcpy_csc_matrix(sMatrix_.get(),
                       valueType_ == NO_VALUE ? NULL : value_,
                       rows_,
                       cols_,
                       /*default stream = */ HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
}

void GpuSparseMatrix::trimFrom(const CpuSparseMatrix& src) {
  if (format_ == SPARSE_CSR) {
    trimFromCSR(src);
  } else {
    trimFromCSC(src);
  }
}

void GpuSparseMatrix::addBias(Matrix& b, real scale) {
  CHECK(b.getHeight() == 1) << "the Bias should be a vector";
  hl_sparse_matrix_s A_d = sMatrix_.get();
  hl_sparse_matrix_add_bias(A_d, b.getData(), scale);
}

void GpuSparseMatrix::add3(GpuMatrix* b) {
  CHECK(getFormat() != SPARSE_CSC) << "Not supported";
  CHECK(height_ == b->getHeight());
  CHECK(width_ == b->getWidth());
  real* B_d = b->getData();
  hl_sparse_matrix_s A_d = sMatrix_.get();
  hl_sparse_matrix_add_dense(A_d, B_d, height_, width_, 1, 0);
}

void GpuSparseMatrix::add3(MatrixPtr b) {
  if (dynamic_cast<GpuMatrix*>(b.get())) {
    add3(dynamic_cast<GpuMatrix*>(b.get()));
  } else {
    LOG(FATAL) << "not supported";
  }
}

void GpuSparseMatrix::zeroMem() {
  CHECK(valueType_ == FLOAT_VALUE);
  real* value = getValue();
  if (value == NULL) {
    LOG(FATAL) << "value is nullptr";
  }
  hl_matrix_zero_mem(value, elementCnt_);
}

void GpuSparseMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
839
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
  CHECK(maxIds.useGpu() && maxVal.useGpu()) << "Matrix type are not equal";
  size_t numSamples = getHeight();
  size_t beam = maxVal.getWidth();
  CHECK_EQ(maxIds.getSize(), numSamples * beam);
  CHECK_EQ(maxVal.getHeight(), numSamples);
  CHECK_EQ(format_, SPARSE_CSR) << "Only support SPARSE_CSR";

  hl_sparse_matrix_top_k(maxVal.getData(),
                         maxVal.getStride(),
                         maxIds.getData(),
                         sMatrix_.get(),
                         beam,
                         numSamples);
#endif
}

856 857
template void GpuSparseMatrix::copyFrom(int64_t* ids,
                                        int64_t* indices,
Z
zhangjinchao01 已提交
858 859
                                        sparse_non_value_t* data,
                                        hl_stream_t stream);
860 861
template void GpuSparseMatrix::copyFrom(int64_t* ids,
                                        int64_t* indices,
Z
zhangjinchao01 已提交
862 863 864
                                        sparse_float_value_t* data,
                                        hl_stream_t stream);
}  // namespace paddle