container.py 8.1 KB
Newer Older
Y
Youwei Song 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import OrderedDict
S
songyouwei 已提交
16
from ..framework import Parameter
Y
Youwei Song 已提交
17 18
from .layers import Layer

S
songyouwei 已提交
19 20 21
__all__ = [
    'Sequential',
    'ParameterList',
22
    'LayerList',
S
songyouwei 已提交
23
]
Y
Youwei Song 已提交
24 25 26 27 28 29 30 31


class Sequential(Layer):
    """Sequential container.
    Sub layers will be added to this container in the order of argument in the constructor.
    The argument passed to the constructor can be iterable Layers or iterable name Layer pairs.

    Parameters:
S
songyouwei 已提交
32
        *layers(tuple): Layers or iterable name Layer pairs.
Y
Youwei Song 已提交
33 34 35 36 37 38 39 40 41 42 43

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            data = np.random.uniform(-1, 1, [30, 10]).astype('float32')
            with fluid.dygraph.guard():
                data = fluid.dygraph.to_variable(data)
                # create Sequential with iterable Layers
S
songyouwei 已提交
44 45
                model1 = fluid.dygraph.Sequential(
                    fluid.Linear(10, 1), fluid.Linear(1, 2)
Y
Youwei Song 已提交
46
                )
S
songyouwei 已提交
47
                model1[0]  # access the first layer
Y
Youwei Song 已提交
48 49 50
                res1 = model1(data)  # sequential execution

                # create Sequential with name Layer pairs
S
songyouwei 已提交
51 52 53
                model2 = fluid.dygraph.Sequential(
                    ('l1', fluid.Linear(10, 2)),
                    ('l2', fluid.Linear(2, 3))
Y
Youwei Song 已提交
54 55
                )
                model2['l1']  # access l1 layer
S
songyouwei 已提交
56
                model2.add_sublayer('l3', fluid.Linear(3, 3))  # add sublayer
Y
Youwei Song 已提交
57 58 59 60
                res2 = model2(data)  # sequential execution

    """

S
songyouwei 已提交
61 62
    def __init__(self, *layers):
        super(Sequential, self).__init__()
Y
Youwei Song 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        if len(layers) > 0 and isinstance(layers[0], tuple):
            for name, layer in layers:
                self.add_sublayer(name, layer)
        else:
            for idx, layer in enumerate(layers):
                self.add_sublayer(str(idx), layer)

    def __getitem__(self, name):
        return self._sub_layers[str(name)]

    def __setitem__(self, name, layer):
        assert isinstance(layer, Layer)
        setattr(self, str(name), layer)

    def __delitem__(self, name):
        name = str(name)
        assert name in self._sub_layers
        del self._sub_layers[name]

    def __len__(self):
        return len(self._sub_layers)

    def forward(self, input):
        for layer in self._sub_layers.values():
            input = layer(input)
        return input
S
songyouwei 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173


class ParameterList(Layer):
    """ParameterList Container.

    This container acts like a Python list, but parameters it contains will be properly added.

    Parameters:
        parameters (iterable, optional): Iterable Parameters to be added

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            class MyLayer(fluid.Layer):
                def __init__(self, num_stacked_param):
                    super(MyLayer, self).__init__()
                    # create ParameterList with iterable Parameters
                    self.params = fluid.dygraph.ParameterList(
                        [fluid.layers.create_parameter(
                            shape=[2, 2], dtype='float32')] * num_stacked_param)

                def forward(self, x):
                    for i, p in enumerate(self.params):
                        tmp = self._helper.create_variable_for_type_inference('float32')
                        self._helper.append_op(
                            type="mul",
                            inputs={"X": x,
                                    "Y": p},
                            outputs={"Out": tmp},
                            attrs={"x_num_col_dims": 1,
                                   "y_num_col_dims": 1})
                        x = tmp
                    return x

            data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(data_np)
                num_stacked_param = 4
                model = MyLayer(num_stacked_param)
                print(len(model.params))  # 4
                res = model(x)
                print(res.shape)  # [5, 2]

                replaced_param = fluid.layers.create_parameter(shape=[2, 3], dtype='float32')
                model.params[num_stacked_param - 1] = replaced_param  # replace last param
                res = model(x)
                print(res.shape)  # [5, 3]
                model.params.append(fluid.layers.create_parameter(shape=[3, 4], dtype='float32'))  # append param
                print(len(model.params))  # 5
                res = model(x)
                print(res.shape)  # [5, 4]
    """

    def __init__(self, parameters=None):
        super(ParameterList, self).__init__()
        if parameters is not None:
            for idx, param in enumerate(parameters):
                assert isinstance(param, Parameter)
                self.add_parameter(str(idx), param)

    def __getitem__(self, idx):
        return self._parameters[str(idx)]

    def __setitem__(self, idx, param):
        assert isinstance(param, Parameter)
        setattr(self, str(idx), param)

    def __len__(self):
        return len(self._parameters)

    def __iter__(self):
        return iter(self._parameters.values())

    def append(self, parameter):
        """Appends a given parameter at the end of the list.

        Parameters:
            parameter (Parameter): parameter to append
        """
        idx = len(self._parameters)
        self.add_parameter(str(idx), parameter)
        return self
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203


class LayerList(Layer):
    """
    LayerList holds sublayers, and sublayers it contains are properly registered.
    Holded sublayers can be indexed like a regular python list.

    Parameters:
        sublayers (iterable of Layer, optional): sublayers to hold

    Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            import numpy as np

            class MyLayer(fluid.Layer):
                def __init__(self):
                    super(MyLayer, self).__init__()
                    self.linears = fluid.dygraph.LayerList(
                        [fluid.dygraph.Linear(10, 10) for i in range(10)])

                def forward(self, x):
                    # LayerList can act as an iterable, or be indexed using ints
                    for i, l in enumerate(self.linears):
                        x = self.linears[i // 2](x) + l(x)
                    return x
    """

    def __init__(self, sublayers=None):
        super(LayerList, self).__init__()
204 205 206
        if sublayers is not None:
            for idx, layer in enumerate(sublayers):
                self.add_sublayer(str(idx), layer)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

    def __getitem__(self, idx):
        if isinstance(idx, slice):
            return self.__class__(list(self._sub_layers.values())[idx])
        else:
            return self._sub_layers[str(idx)]

    def __setitem__(self, idx, sublayer):
        return setattr(self, str(idx), sublayer)

    def __delitem__(self, idx):
        if isinstance(idx, slice):
            for k in range(len(self._sub_layers))[idx]:
                delattr(self, str(k))
        else:
            delattr(self, str(idx))
        str_indices = [str(i) for i in range(len(self._sub_layers))]
        self._sub_layers = OrderedDict(
            list(zip(str_indices, self._sub_layers.values())))

    def __len__(self):
        return len(self._sub_layers)

    def __iter__(self):
        return iter(self._sub_layers.values())

    def append(self, sublayer):
        """
        Appends a sublayer to the end of the list.

        Parameters:
            sublayer (Layer): sublayer to append
        """
        self.add_sublayer(str(len(self)), sublayer)
        return self