test_where_op.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
19
import paddle
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.op import Operator
from paddle.fluid.backward import append_backward


class TestWhereOp(OpTest):
    def setUp(self):
        self.op_type = "where"
        self.init_config()
        self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
        self.outputs = {'Out': np.where(self.cond, self.x, self.y)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X', 'Y'], 'Out')

    def init_config(self):
        self.x = np.random.uniform(-3, 5, (100)).astype("float64")
        self.y = np.random.uniform(-3, 5, (100)).astype("float64")
        self.cond = np.zeros((100)).astype("bool")


class TestWhereOp2(TestWhereOp):
    def init_config(self):
        self.x = np.random.uniform(-5, 5, (60, 2)).astype("float64")
        self.y = np.random.uniform(-5, 5, (60, 2)).astype("float64")
        self.cond = np.ones((60, 2)).astype("bool")


class TestWhereOp3(TestWhereOp):
    def init_config(self):
        self.x = np.random.uniform(-3, 5, (20, 2, 4)).astype("float64")
        self.y = np.random.uniform(-3, 5, (20, 2, 4)).astype("float64")
        self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)


class TestWhereAPI(unittest.TestCase):
63 64
    def setUp(self):
        self.init_data()
65

66 67 68 69 70 71
    def init_data(self):
        self.shape = [10, 15]
        self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
        self.x = np.random.uniform(-2, 3, self.shape).astype(np.float32)
        self.y = np.random.uniform(-2, 3, self.shape).astype(np.float32)
        self.out = np.where(self.cond, self.x, self.y)
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    def ref_x_backward(self, dout):
        return np.where(self.cond == True, dout, 0)

    def ref_y_backward(self, dout):
        return np.where(self.cond == False, dout, 0)

    def test_api(self, use_cuda=False):
        for x_stop_gradient in [False, True]:
            for y_stop_gradient in [False, True]:
                with fluid.program_guard(Program(), Program()):
                    cond = fluid.layers.data(
                        name='cond', shape=self.shape, dtype='bool')
                    x = fluid.layers.data(
                        name='x', shape=self.shape, dtype='float32')
                    y = fluid.layers.data(
                        name='y', shape=self.shape, dtype='float32')
                    x.stop_gradient = x_stop_gradient
                    y.stop_gradient = y_stop_gradient
                    result = paddle.where(cond, x, y)
                    append_backward(layers.mean(result))

                    for use_cuda in [False, True]:
                        if use_cuda and not fluid.core.is_compiled_with_cuda():
                            break
                        place = fluid.CUDAPlace(
                            0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)
                        fetch_list = [result, result.grad_name]
                        if x_stop_gradient is False:
                            fetch_list.append(x.grad_name)
                        if y_stop_gradient is False:
                            fetch_list.append(y.grad_name)
                        out = exe.run(
                            fluid.default_main_program(),
                            feed={'cond': self.cond,
                                  'x': self.x,
                                  'y': self.y},
                            fetch_list=fetch_list)
                        assert np.array_equal(out[0], self.out)
                        if x_stop_gradient is False:
                            assert np.array_equal(out[2],
                                                  self.ref_x_backward(out[1]))
                            if y.stop_gradient is False:
                                assert np.array_equal(
                                    out[3], self.ref_y_backward(out[1]))
                        elif y.stop_gradient is False:
                            assert np.array_equal(out[2],
                                                  self.ref_y_backward(out[1]))
121 122 123 124 125 126 127

    def test_api_broadcast(self, use_cuda=False):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
            x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype("float32")
128 129
            y_i = np.array([[1.0, 1.0, 1.0, 1.0],
                            [1.0, 1.0, 1.0, 1.0]]).astype("float32")
130
            result = paddle.where(x > 1, x=x, y=y)
131 132 133 134 135 136 137 138 139 140

            for use_cuda in [False, True]:
                if use_cuda and not fluid.core.is_compiled_with_cuda():
                    return
                place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
                              feed={'x': x_i,
                                    'y': y_i},
                              fetch_list=[result])
141
                assert np.array_equal(out[0], np.where(x_i > 1, x_i, y_i))
142 143 144 145 146 147 148 149 150 151 152


class TestWhereDygraphAPI(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float64")
            cond_i = np.array([False, False, True, True]).astype("bool")
            x = fluid.dygraph.to_variable(x_i)
            y = fluid.dygraph.to_variable(y_i)
            cond = fluid.dygraph.to_variable(cond_i)
153
            out = paddle.where(cond, x, y)
154 155 156 157 158 159 160 161 162 163 164
            assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))


class TestWhereOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float64")
            cond_i = np.array([False, False, True, True]).astype("bool")

            def test_Variable():
165
                paddle.where(cond_i, x_i, y_i)
166 167 168 169 170 171 172

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                x = fluid.layers.data(name='x', shape=[4], dtype='bool')
                y = fluid.layers.data(name='y', shape=[4], dtype='float16')
                cond = fluid.layers.data(name='cond', shape=[4], dtype='int32')
173
                paddle.where(cond, x, y)
174 175 176 177 178 179

            self.assertRaises(TypeError, test_type)


if __name__ == '__main__':
    unittest.main()