amp_auto_cast.cc 20.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/amp_auto_cast.h"
16

17 18
#include <memory>
#include <string>
19

J
Jiabin Yang 已提交
20
#include "paddle/fluid/eager/eager_tensor.h"
21
#include "paddle/fluid/imperative/tracer.h"
J
Jiabin Yang 已提交
22 23
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/imperative/var_helper.h"
24 25 26 27

namespace paddle {
namespace imperative {

W
wanghuancoder 已提交
28 29
class VarBase;

L
Leo Chen 已提交
30 31 32 33 34 35 36 37 38
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
39 40
std::tuple<std::unordered_set<std::string>,
           std::unordered_set<std::string>,
L
Leo Chen 已提交
41 42 43 44
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string& place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
45 46 47
  std::transform(place.begin(),
                 place.end(),
                 std::back_inserter(query_place),
L
Leo Chen 已提交
48 49 50
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place&)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
51 52 53 54
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
      {"NPU", &platform::is_npu_place},
L
Leo Chen 已提交
55 56
      {"MLU", &platform::is_mlu_place},
  };
57 58
  PADDLE_ENFORCE_NE(is_target_place.count(query_place),
                    0,
L
Leo Chen 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
                    platform::errors::InvalidArgument(
                        "The argument `place` should be 'GPU', 'CPU', 'XPU', "
                        "'NPU', 'MLU', but got '%s'.",
                        place));

  std::unordered_set<std::string> all_ops;
  const auto& op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto& kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

81 82
  auto phi_kernels = phi::KernelFactory::Instance().kernels();
  for (auto& kernel_pair : phi_kernels) {
83
    auto op_type = phi::TransToFluidOpName(kernel_pair.first);
L
Leo Chen 已提交
84 85
    for (auto& info_pair : kernel_pair.second) {
      framework::OpKernelType kernel_type =
86
          framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
L
Leo Chen 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
      if (is_target_place[query_place](kernel_type.place_) &&
          kernel_type.data_type_ == dtype && all_ops.count(op_type)) {
        VLOG(4) << op_type << " " << supported_ops.size();
        supported_ops.emplace(op_type);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto& op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
106 107
  return std::make_tuple(
      std::move(all_ops), std::move(supported_ops), std::move(unsupported_ops));
L
Leo Chen 已提交
108 109
}

L
Leo Chen 已提交
110 111 112 113 114 115 116 117 118 119 120
AutoCastGuard::AutoCastGuard(std::shared_ptr<Tracer> tracer, AmpLevel level)
    : tracer_(tracer) {
  pre_amp_level_ = tracer_->GetAmpLevel();

  if (pre_amp_level_ != level) {
    tracer_->SetAmpLevel(level);
  }
}

AutoCastGuard::~AutoCastGuard() { tracer_->SetAmpLevel(pre_amp_level_); }

121 122
AmpOperators::AmpOperators()
    : allow_ops_(new std::unordered_set<std::string>()),
123
      block_ops_(new std::unordered_set<std::string>()),
124 125
      unsupported_fp16_ops_(new std::unordered_set<std::string>()),
      unsupported_bf16_ops_(new std::unordered_set<std::string>()) {
L
Leo Chen 已提交
126
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
127
  auto unsupported_ops_gpu_fp16 = std::get<2>(
L
Leo Chen 已提交
128
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::FP16));
129 130 131 132 133 134
  unsupported_fp16_ops_->insert(unsupported_ops_gpu_fp16.begin(),
                                unsupported_ops_gpu_fp16.end());
  auto unsupported_ops_gpu_bf16 = std::get<2>(
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_gpu_bf16.begin(),
                                unsupported_ops_gpu_bf16.end());
Q
qipengh 已提交
135
// NOTE: GPU/NPU/XPU/MLU is compiled seperatly.
L
Leo Chen 已提交
136
#elif defined(PADDLE_WITH_ASCEND_CL)
137
  auto unsupported_ops_npu_fp16 = std::get<2>(
L
Leo Chen 已提交
138
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::FP16));
139 140 141 142 143 144
  unsupported_fp16_ops_->insert(unsupported_ops_npu_fp16.begin(),
                                unsupported_ops_npu_fp16.end());
  auto unsupported_ops_npu_bf16 = std::get<2>(
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_npu_bf16.begin(),
                                unsupported_ops_npu_bf16.end());
L
Leo Chen 已提交
145
#elif defined(PADDLE_WITH_XPU)
146
  auto unsupported_ops_xpu_fp16 = std::get<2>(
L
Leo Chen 已提交
147
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::FP16));
148 149 150 151 152 153
  unsupported_fp16_ops_->insert(unsupported_ops_xpu_fp16.begin(),
                                unsupported_ops_xpu_fp16.end());
  auto unsupported_ops_xpu_bf16 = std::get<2>(
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_xpu_bf16.begin(),
                                unsupported_ops_xpu_bf16.end());
Q
qipengh 已提交
154 155 156 157 158 159 160 161 162
#elif defined(PADDLE_WITH_MLU)
  auto unsupported_ops_mlu_fp16 = std::get<2>(
      OpSupportedInfos("MLU", paddle::framework::proto::VarType::FP16));
  unsupported_fp16_ops_->insert(unsupported_ops_mlu_fp16.begin(),
                                unsupported_ops_mlu_fp16.end());
  auto unsupported_ops_mlu_bf16 = std::get<2>(
      OpSupportedInfos("MLU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_mlu_bf16.begin(),
                                unsupported_ops_mlu_bf16.end());
L
Leo Chen 已提交
163 164
#endif
  VLOG(4) << allow_ops_->size() << " " << block_ops_->size() << " "
165 166
          << unsupported_fp16_ops_->size() << " "
          << unsupported_bf16_ops_->size();
167 168
}

169 170 171 172 173 174 175
AmpOperators::~AmpOperators() {}

AmpOperators& AmpOperators::Instance() {
  static AmpOperators instance;
  return instance;
}

176 177
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableAllowOps() {
178 179 180
  return allow_ops_;
}

181 182
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableBlockOps() {
183 184 185
  return block_ops_;
}

186 187 188 189 190
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedFp16Ops() {
  return unsupported_fp16_ops_;
}

191 192 193 194 195
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedBf16Ops() {
  return unsupported_bf16_ops_;
}

196 197 198
std::ostream& operator<<(std::ostream& os, AmpOperators& ops) {
  os << "allow ops: ";
  auto allow_ops = ops.GetMutableAllowOps();
199 200
  std::copy((*allow_ops).begin(),
            (*allow_ops).end(),
201
            std::ostream_iterator<std::string>(os, " "));
202
  os << "\n";
203 204
  os << "block ops: ";
  auto block_ops = ops.GetMutableBlockOps();
205 206
  std::copy((*block_ops).begin(),
            (*block_ops).end(),
207
            std::ostream_iterator<std::string>(os, " "));
208 209 210
  os << "\n";
  os << "unsupported fp16 ops: ";
  auto unsupported_fp16_ops = ops.GetMutableUnsupportedFp16Ops();
211 212
  std::copy((*unsupported_fp16_ops).begin(),
            (*unsupported_fp16_ops).end(),
213
            std::ostream_iterator<std::string>(os, " "));
214 215 216
  os << "\n";
  os << "unsupported bf16 ops: ";
  auto unsupported_bf16_ops = ops.GetMutableUnsupportedBf16Ops();
217 218
  std::copy((*unsupported_bf16_ops).begin(),
            (*unsupported_bf16_ops).end(),
219
            std::ostream_iterator<std::string>(os, " "));
220 221 222
  return os;
}

J
Jiabin Yang 已提交
223 224 225
template <typename VarType>
inline std::string GetDtypeStr(const std::shared_ptr<VarType>& var) {
  return framework::DataTypeToString(GetDataType<VarType>(var));
226
}
J
Jiabin Yang 已提交
227 228 229 230 231 232
template <typename VarType>
inline bool NeedCast(const std::shared_ptr<VarType>& var) {
  auto place = GetPlace(var);
  auto data_type = GetDataType<VarType>(var);
  if (paddle::platform::is_gpu_place(place) ||
      paddle::platform::is_cuda_pinned_place(place) ||
F
furnace 已提交
233
      paddle::platform::is_xpu_place(place) ||
Q
qipengh 已提交
234
      paddle::platform::is_mlu_place(place) ||
235
      paddle::platform::is_custom_place(place) ||
F
furnace 已提交
236 237
      paddle::platform::is_npu_place(place) ||
      paddle::platform::is_npu_pinned_place(place)) {
L
Leo Chen 已提交
238
    // CudaPinndePlace is added for varbase created by dataloader
J
Jiabin Yang 已提交
239
    if (data_type == paddle::framework::proto::VarType::FP32 ||
240 241
        data_type == paddle::framework::proto::VarType::FP16 ||
        data_type == paddle::framework::proto::VarType::BF16) {
L
Leo Chen 已提交
242 243
      return true;
    }
244
  }
L
Leo Chen 已提交
245
  return false;
246 247 248 249
}

// NOTE: Trace a cast op, so if a var is casted from fp32 to fp16, then the grad
// var will be cast back from fp16 to fp32 during backward phase.
J
Jiabin Yang 已提交
250 251 252
template <typename VarType>
static inline std::shared_ptr<VarType> CastToType(
    const std::shared_ptr<VarType>& var,
253 254
    const framework::proto::VarType::Type dst_type) {
  const auto& tracer = imperative::GetCurrentTracer();
J
Jiabin Yang 已提交
255 256
  imperative::NameVarMap<VarType> ins = {{"X", {var}}};
  framework::AttributeMap attrs = {{"in_dtype", GetDataType<VarType>(var)},
257
                                   {"out_dtype", dst_type}};
J
Jiabin Yang 已提交
258 259 260
  auto out =
      std::shared_ptr<VarType>(new VarType(tracer->GenerateUniqueName()));
  imperative::NameVarMap<VarType> outs = {{"Out", {out}}};
261 262

  {
L
Leo Chen 已提交
263
    AutoCastGuard guard(tracer, AmpLevel::O0);
264 265 266 267 268
    tracer->TraceOp("cast", ins, outs, std::move(attrs));
  }

  return out;
}
J
Jiabin Yang 已提交
269 270 271
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP16(
    const std::shared_ptr<VarType>& var) {
272
  auto dst_type = framework::proto::VarType::FP16;
J
Jiabin Yang 已提交
273
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
274 275 276 277 278
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
279 280 281
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP32(
    const std::shared_ptr<VarType>& var) {
282
  auto dst_type = framework::proto::VarType::FP32;
J
Jiabin Yang 已提交
283
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
284 285 286 287 288
    return CastToType(var, dst_type);
  }
  return var;
}

289 290 291 292 293 294 295 296 297 298
template <typename VarType>
static inline std::shared_ptr<VarType> CastToBF16(
    const std::shared_ptr<VarType>& var) {
  auto dst_type = framework::proto::VarType::BF16;
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
299
template <typename VarType>
300
static inline framework::proto::VarType::Type GetPromoteType(
301 302
    const std::string& op_type,
    const NameVarMap<VarType>& ins,
303 304
    const framework::proto::VarType::Type amp_dtype) {
  auto dst_type = amp_dtype;
305 306
  for (const auto& pair : ins) {
    for (const auto& var : pair.second) {
J
Jiabin Yang 已提交
307 308
      if (GetDataType<VarType>(var) == framework::proto::VarType::FP32) {
        dst_type = GetDataType<VarType>(var);
309 310 311 312
        break;
      }
    }
  }
C
cc 已提交
313 314 315 316 317

  // NOTE(juncai): moving_average_abs_max_scale only consider the
  // dtype of input(X)
  if (op_type == "moving_average_abs_max_scale") {
    for (const auto& pair : ins) {
318 319
      if (pair.first == "X" && GetDataType<VarType>(pair.second.front()) ==
                                   framework::proto::VarType::FP16) {
C
cc 已提交
320 321 322 323 324
        dst_type = framework::proto::VarType::FP16;
      }
    }
  }

325 326 327
  return dst_type;
}

J
Jiabin Yang 已提交
328 329 330 331
template <typename VarType>
NameVarMap<VarType> AutoCastInputs(const std::string& op_type,
                                   const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
332 333 334
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
335 336
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
337 338 339 340
          pair.first != "X") {
        continue;
      }

341 342 343 344 345 346 347 348
      if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
        if (pair.first == "LnScale" || pair.first == "LnBias" ||
            pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
            pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
          continue;
        }
      }

349 350
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float16";
351
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
352
        var = CastToFP16<VarType>(var);
353 354 355
      }
    }
    return new_ins;
Z
zhangbo9674 已提交
356 357 358
  } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type) ||
             AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(
                 op_type)) {
359
    for (auto& pair : new_ins) {
360 361
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
362
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
363
        var = CastToFP32<VarType>(var);
364 365 366 367
      }
    }
    return new_ins;
  } else {
368 369
    auto dst_type =
        GetPromoteType<VarType>(op_type, ins, framework::proto::VarType::FP16);
C
cc 已提交
370

371 372 373 374 375 376
    // NOTE(zhiqiu): if the op has op fp16 kernel, fall back to fp32.
    if (dst_type == framework::proto::VarType::FP16 &&
        AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(
            op_type)) {
      dst_type = framework::proto::VarType::FP32;
    }
377 378
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
379 380
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
381 382 383
          pair.first == "X" && dst_type == framework::proto::VarType::FP32) {
        continue;
      }
384 385 386 387 388 389 390 391
      if ((op_type == "fused_attention" || op_type == "fused_feedforwad") &&
          dst_type == framework::proto::VarType::FP32) {
        if (pair.first != "LnScale" && pair.first != "LnBias" &&
            pair.first != "Ln2Scale" && pair.first != "Ln2Bias" &&
            pair.first != "Ln1Scale" && pair.first != "Ln1Bias") {
          continue;
        }
      }
392 393 394
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to "
              << framework::DataTypeToString(dst_type);
395
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
396 397 398
        var = (dst_type == framework::proto::VarType::FP32
                   ? CastToFP32<VarType>(var)
                   : CastToFP16<VarType>(var));
399 400 401 402
      }
    }
    return new_ins;
  }
403
  return new_ins;
404
}
J
Jiabin Yang 已提交
405 406
template NameVarMap<VarBase> AutoCastInputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
407 408
template NameVarMap<egr::EagerVariable> AutoCastInputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
J
Jiabin Yang 已提交
409 410 411 412
template <typename VarType>
NameVarMap<VarType> CastPureFp16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
413 414 415 416 417 418
  auto dst_type = framework::proto::VarType::FP16;
  if (AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
419 420 421 422 423 424 425
    // NOTE: The run_program OP only has FP32 kernel. In dy2stat pure fp16
    // training, we have correctly cast the inputs of run_program OP before,
    // so here should avoid casting for run_program OP.
    if (op_type == "run_program") {
      continue;
    }

426 427 428 429 430
    if ((op_type == "batch_norm" || op_type == "layer_norm" ||
         op_type == "sync_batch_norm") &&
        pair.first != "X") {
      continue;
    }
Z
zhangkaihuo 已提交
431 432 433 434 435 436 437
    if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
      if (pair.first == "LnScale" || pair.first == "LnBias" ||
          pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
          pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
        continue;
      }
    }
438 439 440 441
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
J
Jiabin Yang 已提交
442 443 444
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToFP16<VarType>(var));
445 446 447 448
    }
  }
  return new_ins;
}
J
Jiabin Yang 已提交
449 450
template NameVarMap<VarBase> CastPureFp16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
451 452
template NameVarMap<egr::EagerVariable> CastPureFp16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
453 454 455 456 457 458 459 460 461 462 463 464 465 466

template <typename VarType>
NameVarMap<VarType> AutoCastBF16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to bfloat16";
      for (auto& var : pair.second) {
        var = CastToBF16<VarType>(var);
      }
    }
    return new_ins;
467
  } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
468 469 470 471 472 473 474 475
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
      for (auto& var : pair.second) {
        var = CastToFP32<VarType>(var);
      }
    }
    return new_ins;
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  } else {
    auto dst_type =
        GetPromoteType<VarType>(op_type, ins, framework::proto::VarType::BF16);
    // NOTE(zhangbo): if the op has op fp16 kernel, fall back to fp32.
    if (dst_type == framework::proto::VarType::BF16 &&
        AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count(
            op_type)) {
      dst_type = framework::proto::VarType::FP32;
    }
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to "
              << framework::DataTypeToString(dst_type);
      for (auto& var : pair.second) {
        var = (dst_type == framework::proto::VarType::FP32
                   ? CastToFP32<VarType>(var)
                   : CastToBF16<VarType>(var));
      }
    }
    return new_ins;
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  }
  return new_ins;
}
template NameVarMap<VarBase> AutoCastBF16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
template NameVarMap<egr::EagerVariable> AutoCastBF16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);

template <typename VarType>
NameVarMap<VarType> CastPureBf16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
  auto dst_type = framework::proto::VarType::BF16;
  if (AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToBF16<VarType>(var));
    }
  }
  return new_ins;
}
template NameVarMap<VarBase> CastPureBf16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
template NameVarMap<egr::EagerVariable> CastPureBf16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);

530 531
}  // namespace imperative
}  // namespace paddle