ops_extra_info.h 8.1 KB
Newer Older
1
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17 18 19 20
#include <string>
#include <unordered_map>
#include <vector>

21 22 23 24 25
#include "paddle/fluid/framework/attribute.h"

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37 38 39
// This file is to be compatible with the bad design and
// implementation of fluid in the past

// Many operators in fluid have extra attributes, which are generally added
// to implement some specific kernel selection and to meet the specialization
// needs of a specific operation library like mkldnn or cudnn
enum class ExtraAttrProperty : uint8_t {
  // The attributes that are no longer used by any scene
  DEPRECATED = 0,
  // The attributes used for framework execution scheduling,
  // such as `use_mkldnn`, `use_cudnn`, no need to save
  SCHEDULE,
  // The attributes for ONEDNN only, can be saved in OneDNNContext
  ONEDNN,
H
HongyuJia 已提交
40
  // The attributes for GPUDNN only, can be saved in GPUContext
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  GPUDNN,
  // Add necessary properties as needed
};

class ExtraAttrPropertySet final {
 public:
  constexpr ExtraAttrPropertySet() : bitset_(0) {}
  constexpr ExtraAttrPropertySet(ExtraAttrProperty e)  // NOLINT
      : bitset_(e == ExtraAttrProperty::DEPRECATED
                    ? 0
                    : 1ULL << (static_cast<uint8_t>(e) - 1)) {}

  inline uint64_t bitset() const { return bitset_; }

  bool inline Support(ExtraAttrProperty e) const {
    // DEPRECATED ExtraAttr always return false
    return static_cast<bool>(bitset_ & ExtraAttrPropertySet(e).bitset());
  }
  bool IsEmpty() const { return bitset_ == 0; }

  ExtraAttrPropertySet operator|(const ExtraAttrPropertySet& other) const {
    return ExtraAttrPropertySet(bitset_ | other.bitset());
  }
  ExtraAttrPropertySet operator&(const ExtraAttrPropertySet& other) const {
    return ExtraAttrPropertySet(bitset_ & other.bitset());
  }
  ExtraAttrPropertySet operator-(const ExtraAttrPropertySet& other) const {
    return ExtraAttrPropertySet(bitset_ & ~other.bitset());
  }
  ExtraAttrPropertySet operator^(const ExtraAttrPropertySet& other) const {
    return ExtraAttrPropertySet(bitset_ ^ other.bitset());
  }

  bool operator==(const ExtraAttrPropertySet& other) const {
    return bitset_ == other.bitset();
  }

 private:
  constexpr ExtraAttrPropertySet(uint64_t bitset) : bitset_(bitset) {}
  uint64_t bitset_;
};

const std::unordered_map<std::string, ExtraAttrPropertySet>
    extra_attr_properties = {
        // DEPRECATED attributes
        {"use_quantizer", ExtraAttrProperty::DEPRECATED},
        // SCHEDULE attributes
        {"use_cudnn", ExtraAttrProperty::SCHEDULE},
        {"use_mkldnn", ExtraAttrProperty::SCHEDULE},
        // ONEDNN dedicated attributes
        {"data_format", ExtraAttrProperty::ONEDNN},
        {"force_fp32_output", ExtraAttrProperty::ONEDNN},
        {"fuse_activation", ExtraAttrProperty::ONEDNN},
        {"fuse_activation_type", ExtraAttrProperty::ONEDNN},
        {"fuse_activation_alpha", ExtraAttrProperty::ONEDNN},
        {"fuse_activation_beta", ExtraAttrProperty::ONEDNN},
        {"fuse_activation_scale", ExtraAttrProperty::ONEDNN},
98
        {"fused_output_scale", ExtraAttrProperty::ONEDNN},
99 100 101
        {"fuse_alpha", ExtraAttrProperty::ONEDNN},
        {"fuse_beta", ExtraAttrProperty::ONEDNN},
        {"fuse_relu", ExtraAttrProperty::ONEDNN},
102
        {"fused_output_scale", ExtraAttrProperty::ONEDNN},
103 104 105 106 107 108 109 110 111 112 113 114 115 116
        {"fuse_residual_connection", ExtraAttrProperty::ONEDNN},
        {"fuse_with_relu", ExtraAttrProperty::ONEDNN},
        {"mkldnn_data_type", ExtraAttrProperty::ONEDNN},
        {"scale_x", ExtraAttrProperty::ONEDNN},
        {"scale_y", ExtraAttrProperty::ONEDNN},
        {"scale_out", ExtraAttrProperty::ONEDNN},
        {"Scale_in", ExtraAttrProperty::ONEDNN},
        {"Scale_in_eltwise", ExtraAttrProperty::ONEDNN},
        {"Scale_x", ExtraAttrProperty::ONEDNN},
        {"Scale_y", ExtraAttrProperty::ONEDNN},
        {"Scale_out", ExtraAttrProperty::ONEDNN},
        {"Scale_weights", ExtraAttrProperty::ONEDNN},
        {"x_data_format", ExtraAttrProperty::ONEDNN},
        {"y_data_format", ExtraAttrProperty::ONEDNN},
117 118 119
        {"fused_squeeze2_axes", ExtraAttrProperty::ONEDNN},
        {"fused_unsqueeze2_axes", ExtraAttrProperty::ONEDNN},
        {"fused_reshape2_shape", ExtraAttrProperty::ONEDNN},
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        // ONEDNN pass dedicated attributes
        {"Activation_scale", ExtraAttrProperty::ONEDNN},
        {"Bias_scales", ExtraAttrProperty::ONEDNN},
        {"Output_shift_scale", ExtraAttrProperty::ONEDNN},
        {"Sum_scale", ExtraAttrProperty::ONEDNN},
        // GPUDNN dedicated attributes
        {"exhaustive_search", ExtraAttrProperty::GPUDNN},
        {"fuse_relu_before_depthwise_conv", ExtraAttrProperty::GPUDNN},
        {"use_addto", ExtraAttrProperty::GPUDNN},
        {"workspace_size_MB", ExtraAttrProperty::GPUDNN},
        // Mixed-use attributes
        {"is_test",
         ExtraAttrPropertySet(ExtraAttrProperty::ONEDNN) |
             ExtraAttrPropertySet(ExtraAttrProperty::GPUDNN)},
};

H
HongyuJia 已提交
136
inline ExtraAttrPropertySet GetExtraAttrProperties(
137 138 139 140 141 142 143 144
    const std::string& attr_name) {
  auto iter = extra_attr_properties.find(attr_name);
  if (iter != extra_attr_properties.end()) {
    return iter->second;
  }
  return ExtraAttrPropertySet();
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
template <typename T>
struct ExtraAttrChecker {
  ExtraAttrChecker(const std::string& attr_name, T default_value)
      : attr_name(attr_name), default_val(default_value) {}

  void operator()(framework::AttributeMap* attr_map,
                  bool only_check_exist_value) {
    auto it = attr_map->find(attr_name);
    if (it == attr_map->end()) {
      if (!only_check_exist_value) {
        attr_map->emplace(attr_name, default_val);
      }
      return;
    }
    framework::ExtractAttribute<T> extract_attr(attr_name);
    extract_attr(it->second);
  }

  const std::string& attr_name;
  T default_val;
};

class ExtraInfoUtils {
 public:
  static ExtraInfoUtils& Instance() {
    static ExtraInfoUtils extra_info_utils;
    return extra_info_utils;
  }

  const std::unordered_map<std::string, paddle::framework::AttributeMap>&
  GetAllExtraAttrsMap() const {
    return g_extra_attrs_map_;
  }

  const paddle::framework::AttributeMap& GetExtraAttrsMap(
      const std::string& op_type) const {
    auto iter = g_extra_attrs_map_.find(op_type);
    if (iter != g_extra_attrs_map_.end()) {
      return iter->second;
    }
    return empty_extra_attrs_map_;
  }

  const std::vector<std::function<void(framework::AttributeMap*, bool)>>&
  GetExtraAttrsChecker(const std::string& op_type) const {
    auto iter = g_extra_attrs_checker_.find(op_type);
    if (iter != g_extra_attrs_checker_.end()) {
      return iter->second;
    }
    return empty_extra_attrs_checker_;
  }

197 198 199 200 201 202 203 204 205
  const std::vector<std::string>& GetExtraInputNamesMap(
      const std::string& op_type) const {
    auto iter = g_extra_input_names_map_.find(op_type);
    if (iter != g_extra_input_names_map_.end()) {
      return iter->second;
    }
    return empty_extra_input_names_;
  }

206 207 208 209 210 211 212 213 214 215 216 217
 private:
  ExtraInfoUtils();

  std::unordered_map<std::string, paddle::framework::AttributeMap>
      g_extra_attrs_map_;
  paddle::framework::AttributeMap empty_extra_attrs_map_{};
  std::unordered_map<
      std::string,
      std::vector<std::function<void(framework::AttributeMap*, bool)>>>
      g_extra_attrs_checker_;
  std::vector<std::function<void(framework::AttributeMap*, bool)>>
      empty_extra_attrs_checker_{};
218 219 220

  // TODO(chenweihang): move these extra inputs into op_compat.yaml
  std::unordered_map<std::string, std::vector<std::string>>
221
      g_extra_input_names_map_ = {{"conv2d_transpose", {"Bias"}}};
222
  std::vector<std::string> empty_extra_input_names_;
223 224 225 226
};

}  // namespace operators
}  // namespace paddle