reindex.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode, Variable
from paddle.fluid.data_feeder import check_variable_and_dtype
19
from paddle import _legacy_C_ops
20 21 22 23

__all__ = []


24 25 26
def reindex_graph(
    x, neighbors, count, value_buffer=None, index_buffer=None, name=None
):
27 28 29 30 31
    """
    Reindex Graph API.

    This API is mainly used in Graph Learning domain, which should be used
    in conjunction with `graph_sample_neighbors` API. And the main purpose
32
    is to reindex the ids information of the input nodes, and return the
33 34
    corresponding graph edges after reindex.

35
    **Notes**:
36
        The number in x should be unique, otherwise it would cause potential errors.
37
    We will reindex all the nodes from 0.
38 39

    Take input nodes x = [0, 1, 2] as an example.
40
    If we have neighbors = [8, 9, 0, 4, 7, 6, 7], and count = [2, 3, 2],
41
    then we know that the neighbors of 0 is [8, 9], the neighbors of 1
42
    is [0, 4, 7], and the neighbors of 2 is [6, 7].
43 44 45 46 47 48 49 50 51 52 53 54
    Then after graph_reindex, we will have 3 different outputs:
        1. reindex_src: [3, 4, 0, 5, 6, 7, 6]
        2. reindex_dst: [0, 0, 1, 1, 1, 2, 2]
        3. out_nodes: [0, 1, 2, 8, 9, 4, 7, 6]
    We can see that the numbers in `reindex_src` and `reindex_dst` is the corresponding index
    of nodes in `out_nodes`.

    Args:
        x (Tensor): The input nodes which we sample neighbors for. The available
                    data type is int32, int64.
        neighbors (Tensor): The neighbors of the input nodes `x`. The data type
                            should be the same with `x`.
55
        count (Tensor): The neighbor count of the input nodes `x`. And the
56 57 58 59 60
                        data type should be int32.
        value_buffer (Tensor|None): Value buffer for hashtable. The data type should be int32,
                                    and should be filled with -1. Only useful for gpu version.
        index_buffer (Tensor|None): Index buffer for hashtable. The data type should be int32,
                                    and should be filled with -1. Only useful for gpu version.
61
                                    `value_buffer` and `index_buffer` should be both not None
62 63 64
                                    if you want to speed up by using hashtable buffer.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.
65

66 67 68 69 70 71 72 73
    Returns:
        reindex_src (Tensor): The source node index of graph edges after reindex.
        reindex_dst (Tensor): The destination node index of graph edges after reindex.
        out_nodes (Tensor): The index of unique input nodes and neighbors before reindex,
                            where we put the input nodes `x` in the front, and put neighbor
                            nodes in the back.

    Examples:
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        .. code-block:: python

        import paddle

        x = [0, 1, 2]
        neighbors = [8, 9, 0, 4, 7, 6, 7]
        count = [2, 3, 2]
        x = paddle.to_tensor(x, dtype="int64")
        neighbors = paddle.to_tensor(neighbors, dtype="int64")
        count = paddle.to_tensor(count, dtype="int32")

        reindex_src, reindex_dst, out_nodes = \
             paddle.geometric.reindex_graph(x, neighbors, count)
        # reindex_src: [3, 4, 0, 5, 6, 7, 6]
        # reindex_dst: [0, 0, 1, 1, 1, 2, 2]
        # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6]

    """
93 94 95
    use_buffer_hashtable = (
        True if value_buffer is not None and index_buffer is not None else False
    )
96 97

    if _non_static_mode():
98 99 100 101 102 103 104 105 106
        reindex_src, reindex_dst, out_nodes = _legacy_C_ops.graph_reindex(
            x,
            neighbors,
            count,
            value_buffer,
            index_buffer,
            "flag_buffer_hashtable",
            use_buffer_hashtable,
        )
107 108 109
        return reindex_src, reindex_dst, out_nodes

    check_variable_and_dtype(x, "X", ("int32", "int64"), "graph_reindex")
110 111 112
    check_variable_and_dtype(
        neighbors, "Neighbors", ("int32", "int64"), "graph_reindex"
    )
113 114 115
    check_variable_and_dtype(count, "Count", ("int32"), "graph_reindex")

    if use_buffer_hashtable:
116 117 118 119 120 121
        check_variable_and_dtype(
            value_buffer, "HashTable_Value", ("int32"), "graph_reindex"
        )
        check_variable_and_dtype(
            index_buffer, "HashTable_Index", ("int32"), "graph_reindex"
        )
122 123 124 125 126

    helper = LayerHelper("reindex_graph", **locals())
    reindex_src = helper.create_variable_for_type_inference(dtype=x.dtype)
    reindex_dst = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_nodes = helper.create_variable_for_type_inference(dtype=x.dtype)
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    helper.append_op(
        type="graph_reindex",
        inputs={
            "X": x,
            "Neighbors": neighbors,
            "Count": count,
            "HashTable_Value": value_buffer if use_buffer_hashtable else None,
            "HashTable_Index": index_buffer if use_buffer_hashtable else None,
        },
        outputs={
            "Reindex_Src": reindex_src,
            "Reindex_Dst": reindex_dst,
            "Out_Nodes": out_nodes,
        },
        attrs={"flag_buffer_hashtable": use_buffer_hashtable},
    )
143 144 145
    return reindex_src, reindex_dst, out_nodes


146 147 148
def reindex_heter_graph(
    x, neighbors, count, value_buffer=None, index_buffer=None, name=None
):
149 150 151 152 153 154 155 156 157 158
    """
    Reindex HeterGraph API.

    This API is mainly used in Graph Learning domain, which should be used
    in conjunction with `graph_sample_neighbors` API. And the main purpose
    is to reindex the ids information of the input nodes, and return the
    corresponding graph edges after reindex.

    **Notes**:
        The number in x should be unique, otherwise it would cause potential errors.
159
    We support multi-edge-types neighbors reindexing in reindex_heter_graph api.
160 161 162 163 164 165 166 167 168 169 170 171
    We will reindex all the nodes from 0.

    Take input nodes x = [0, 1, 2] as an example.
    For graph A, suppose we have neighbors = [8, 9, 0, 4, 7, 6, 7], and count = [2, 3, 2],
    then we know that the neighbors of 0 is [8, 9], the neighbors of 1
    is [0, 4, 7], and the neighbors of 2 is [6, 7].
    For graph B, suppose we have neighbors = [0, 2, 3, 5, 1], and count = [1, 3, 1],
    then we know that the neighbors of 0 is [0], the neighbors of 1 is [2, 3, 5],
    and the neighbors of 3 is [1].
    We will get following outputs:
        1. reindex_src: [3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1]
        2. reindex_dst: [0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2]
172
        3. out_nodes: [0, 1, 2, 8, 9, 4, 7, 6, 3, 5]
173 174 175 176

    Args:
        x (Tensor): The input nodes which we sample neighbors for. The available
                    data type is int32, int64.
177
        neighbors (list|tuple): The neighbors of the input nodes `x` from different graphs.
178
                                The data type should be the same with `x`.
179
        count (list|tuple): The neighbor counts of the input nodes `x` from different graphs.
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
                            And the data type should be int32.
        value_buffer (Tensor|None): Value buffer for hashtable. The data type should be int32,
                                    and should be filled with -1. Only useful for gpu version.
        index_buffer (Tensor|None): Index buffer for hashtable. The data type should be int32,
                                    and should be filled with -1. Only useful for gpu version.
                                    `value_buffer` and `index_buffer` should be both not None
                                    if you want to speed up by using hashtable buffer.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        reindex_src (Tensor): The source node index of graph edges after reindex.
        reindex_dst (Tensor): The destination node index of graph edges after reindex.
        out_nodes (Tensor): The index of unique input nodes and neighbors before reindex,
                            where we put the input nodes `x` in the front, and put neighbor
                            nodes in the back.

    Examples:

        .. code-block:: python

        import paddle

        x = [0, 1, 2]
        neighbors_a = [8, 9, 0, 4, 7, 6, 7]
        count_a = [2, 3, 2]
        x = paddle.to_tensor(x, dtype="int64")
        neighbors_a = paddle.to_tensor(neighbors_a, dtype="int64")
        count_a = paddle.to_tensor(count_a, dtype="int32")

        neighbors_b = [0, 2, 3, 5, 1]
        count_b = [1, 3, 1]
        neighbors_b = paddle.to_tensor(neighbors_b, dtype="int64")
        count_b = paddle.to_tensor(count_b, dtype="int32")

        neighbors = [neighbors_a, neighbors_b]
        count = [count_a, count_b]
        reindex_src, reindex_dst, out_nodes = \
             paddle.geometric.reindex_heter_graph(x, neighbors, count)
        # reindex_src: [3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1]
        # reindex_dst: [0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2]
        # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6, 3, 5]

    """
224 225 226
    use_buffer_hashtable = (
        True if value_buffer is not None and index_buffer is not None else False
    )
227 228 229 230

    if _non_static_mode():
        neighbors = paddle.concat(neighbors, axis=0)
        count = paddle.concat(count, axis=0)
231 232 233 234 235 236 237 238 239
        reindex_src, reindex_dst, out_nodes = _legacy_C_ops.graph_reindex(
            x,
            neighbors,
            count,
            value_buffer,
            index_buffer,
            "flag_buffer_hashtable",
            use_buffer_hashtable,
        )
240 241 242 243 244 245 246 247 248 249 250
        return reindex_src, reindex_dst, out_nodes

    if isinstance(neighbors, Variable):
        neighbors = [neighbors]
    if isinstance(count, Variable):
        count = [count]

    neighbors = paddle.concat(neighbors, axis=0)
    count = paddle.concat(count, axis=0)

    check_variable_and_dtype(x, "X", ("int32", "int64"), "heter_graph_reindex")
251 252 253
    check_variable_and_dtype(
        neighbors, "Neighbors", ("int32", "int64"), "graph_reindex"
    )
254 255 256
    check_variable_and_dtype(count, "Count", ("int32"), "graph_reindex")

    if use_buffer_hashtable:
257 258 259 260 261 262
        check_variable_and_dtype(
            value_buffer, "HashTable_Value", ("int32"), "graph_reindex"
        )
        check_variable_and_dtype(
            index_buffer, "HashTable_Index", ("int32"), "graph_reindex"
        )
263 264 265 266 267 268 269

    helper = LayerHelper("reindex_heter_graph", **locals())
    reindex_src = helper.create_variable_for_type_inference(dtype=x.dtype)
    reindex_dst = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_nodes = helper.create_variable_for_type_inference(dtype=x.dtype)
    neighbors = paddle.concat(neighbors, axis=0)
    count = paddle.concat(count, axis=0)
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    helper.append_op(
        type="graph_reindex",
        inputs={
            "X": x,
            "Neighbors": neighbors,
            "Count": count,
            "HashTable_Value": value_buffer if use_buffer_hashtable else None,
            "HashTable_Index": index_buffer if use_buffer_hashtable else None,
        },
        outputs={
            "Reindex_Src": reindex_src,
            "Reindex_Dst": reindex_dst,
            "Out_Nodes": out_nodes,
        },
        attrs={"flag_buffer_hashtable": use_buffer_hashtable},
    )
286
    return reindex_src, reindex_dst, out_nodes