ExpandConvLayer.cpp 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "ExpandConvLayer.h"
Z
zhangjinchao01 已提交
16 17 18
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

19 20 21 22
DEFINE_bool(use_nnpack,
            false,
            "Whether to use nnpack for convolution calculation.");

Z
zhangjinchao01 已提交
23 24
namespace paddle {

25 26 27 28
/*
 * The calculation of the exconvt(convolution transpose (deconv) operation)
 * is a swap of forward and backward of the calculation of exconv.
 * */
Z
zhangjinchao01 已提交
29
REGISTER_LAYER(exconv, ExpandConvLayer);
30
REGISTER_LAYER(exconvt, ExpandConvLayer);
Z
zhangjinchao01 已提交
31

32 33 34 35
inline bool isDepthwiseConv(int channels, int groups) {
  return channels == groups;
}

Z
zhangjinchao01 已提交
36 37 38
bool ExpandConvLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
39
  ExpandConvBaseLayer::init(layerMap, parameterMap);
40 41 42 43 44

  size_t numInputs = config_.inputs_size();
  inputShape_.resize(numInputs);
  filterShape_.resize(numInputs);
  outputShape_.resize(numInputs);
X
xzl 已提交
45

46 47 48
  std::string convType;
  std::string convGradInputType;
  std::string convGradFilterType;
X
xzl 已提交
49

50 51 52 53
  for (int i = 0; i < config_.inputs_size(); i++) {
    std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
    std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};

54 55 56 57 58 59 60
    // Convolution Layer uses the GemmConv function by default.
    convType = "GemmConv";
    convGradInputType = "GemmConvGradInput";
    convGradFilterType = "GemmConvGradFilter";

    // If depth wise convolution and useGpu == true
    if (useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) {
61 62 63
      convType = "DepthwiseConv";
      convGradInputType = "DepthwiseConvGradInput";
      convGradFilterType = "DepthwiseConvGradFilter";
64 65 66 67 68
    }

    // If depth wise convolution and useGpu == false and ARM-NEON
    if (!useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
H
hedaoyuan 已提交
69 70 71 72 73
      if ((filterSize_[i] == filterSizeY_[i]) &&
          (filterSize_[i] == 3 || filterSize_[i] == 4) &&
          (stride_[i] == strideY_[i]) && (stride_[i] == 1 || stride_[i] == 2)) {
        convType = "NeonDepthwiseConv";
      }
74
#endif
X
xzl 已提交
75 76
    }

77
    if (FLAGS_use_nnpack && !isDeconv_) {
78 79 80 81 82 83
      createFunction(forward_,
                     "NNPACKConv",
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i])
H
hedaoyuan 已提交
84
                         .set("algo", std::string("auto")));
85 86
    } else {
      createFunction(forward_,
X
xzl 已提交
87
                     !isDeconv_ ? convType : convGradInputType,
88 89 90 91 92 93
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));

      createFunction(backward_,
X
xzl 已提交
94
                     !isDeconv_ ? convGradInputType : convType,
95 96 97 98
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));
99

100
      createFunction(backward_,
X
xzl 已提交
101
                     convGradFilterType,
102 103 104 105 106
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));
    }
107
  }
Z
zhangjinchao01 已提交
108 109 110
  return true;
}

111 112 113 114 115 116
// i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \
  backward_[2 * i]->calc(inputs, outputs)
#define BACKWARD_FILTER(i, inputs, outputs) \
  backward_[2 * i + 1]->calc(inputs, outputs)

Z
zhangjinchao01 已提交
117 118 119
void ExpandConvLayer::forward(PassType passType) {
  Layer::forward(passType);

120
  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
121
  resetOutput(batchSize, getOutputSize());
Z
zhangjinchao01 已提交
122

123
  // Calculate the shape of the input, output, and filter.
124
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
125 126 127 128 129
    inputShape_[i] = TensorShape({(size_t)batchSize,
                                  (size_t)channels_[i],
                                  (size_t)imgSizeH_[i],
                                  (size_t)imgSizeW_[i]});
    filterShape_[i] =
H
hedaoyuan 已提交
130 131 132 133 134
        TensorShape({(size_t)groups_[i],
                     !isDeconv_ ? (size_t)numFilters_ / groups_[i]
                                : (size_t)channels_[i] / groups_[i],
                     !isDeconv_ ? (size_t)channels_[i] / groups_[i]
                                : (size_t)numFilters_ / groups_[i],
135 136 137 138 139 140
                     (size_t)filterSizeY_[i],
                     (size_t)filterSize_[i]});
    outputShape_[i] = TensorShape({(size_t)batchSize,
                                   (size_t)numFilters_,
                                   (size_t)outputH_[i],
                                   (size_t)outputW_[i]});
Z
zhangjinchao01 已提交
141
  }
142 143 144 145 146 147 148

  // Calculate the output value.
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    BufferArgs inputs;
    BufferArgs outputs;
    inputs.addArg(*getInputValue(i), inputShape_[i]);
    inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
H
hedaoyuan 已提交
149 150 151
    outputs.addArg(*getOutputValue(),
                   outputShape_[i],
                   !isDeconv_ && i == 0 ? ASSIGN_TO : ADD_TO);
152 153 154 155

    forward_[i]->calc(inputs, outputs);
  }

Z
zhangjinchao01 已提交
156
  /* add the bias-vector */
157
  if (biases_.get()) {
H
hedaoyuan 已提交
158 159 160 161 162 163
    MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
                                    1,
                                    biases_->getW()->getElementCnt(),
                                    false,
                                    useGpu_);
    output_.value->addBias(*bias, 1.0, sharedBiases_);
Z
zhangjinchao01 已提交
164 165 166 167 168 169 170 171 172 173 174
  }

  /* activation */
  forwardActivation();
}

void ExpandConvLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr outGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
H
hedaoyuan 已提交
175 176 177 178 179 180 181
    // bpropBiases(outGrad);
    MatrixPtr bias = Matrix::create(biases_->getWGrad()->getData(),
                                    1,
                                    biases_->getWGrad()->getElementCnt(),
                                    false,
                                    useGpu_);
    bias->collectBias(*getOutputGrad(), 1, sharedBiases_);
Z
zhangjinchao01 已提交
182 183 184 185
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

186
  // Calculate the input grad and filter grad.
187
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
188 189 190 191 192 193 194
    if (getInputGrad(i)) {
      BufferArgs inputs;
      BufferArgs outputs;
      inputs.addArg(*getOutputGrad(), outputShape_[i]);
      inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
      outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO);
      BACKWARD_INPUT(i, inputs, outputs);
195
    }
196

Z
zhangjinchao01 已提交
197
    if (weights_[i]->getWGrad()) {
198 199 200 201 202 203 204 205 206 207 208 209
      BufferArgs inputs;
      BufferArgs outputs;
      if (!isDeconv_) {
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
        inputs.addArg(*getInputValue(i), inputShape_[i]);
      } else {
        inputs.addArg(*getInputValue(i), inputShape_[i]);
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
      }
      outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO);
      BACKWARD_FILTER(i, inputs, outputs);

Z
zhangjinchao01 已提交
210 211 212 213 214 215 216
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle