conv_op.cc 34.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

33 34
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
35 36
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
43 44
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
45
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
46
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
47
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
48 49 50 51 52

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
53

54 55
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
56
      platform::errors::InvalidArgument(
57 58
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
59
          in_dims.size(), in_dims));
60

C
chengduoZH 已提交
61 62
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
63
      platform::errors::InvalidArgument(
64 65 66 67
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
68
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
69 70

  int in_sub_stride_size = in_dims.size() - strides.size();
71 72 73
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
74 75 76 77 78 79 80
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(), in_dims, strides.size(),
          framework::make_ddim(strides), in_sub_stride_size));
L
liym27 已提交
81 82 83

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
84

85 86
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
87
      platform::errors::InvalidArgument(
88 89 90 91 92
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
93 94
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
95
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
96
      filter_dims[0] % groups, 0,
97
      platform::errors::InvalidArgument(
98 99 100 101
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
102
          filter_dims[0], filter_dims, groups));
C
chengduoZH 已提交
103

L
liym27 已提交
104 105 106 107 108 109
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
110

111 112
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
113

L
liym27 已提交
114 115 116 117 118 119 120 121
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
122
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
123
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
124
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
125 126
      output_shape.push_back(-1);
    } else {
127 128 129
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
130
    }
C
chengduoZH 已提交
131
  }
L
liym27 已提交
132 133 134 135
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

136
  return output_shape;
C
chengduoZH 已提交
137 138
}

139 140
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
141 142
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
143
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
144
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
145
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
146 147
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
148 149
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
150
#ifdef PADDLE_WITH_CUDA
151
  if (platform::CanCUDNNBeUsed(ctx)) {
152
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
153 154
  }
#endif
155
#ifdef PADDLE_WITH_MKLDNN
156
  if (library == framework::LibraryType::kPlain &&
157
      platform::CanMKLDNNBeUsed(ctx)) {
158
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
159
    layout = framework::DataLayout::kMKLDNN;
160
    customized_type_value =
161 162
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
163 164
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
165
  }
166
#endif
167

168
  if (input_data_type != framework::proto::VarType::INT8 &&
169 170
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
171 172
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
173 174
                      platform::errors::InvalidArgument(
                          "input and filter data type should be consistent"));
175
  }
K
Kexin Zhao 已提交
176
  if (input_data_type == framework::proto::VarType::FP16) {
177
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
178 179
                      platform::errors::InvalidArgument(
                          "float16 can only be used when CUDNN is used"));
K
Kexin Zhao 已提交
180 181
  }

182 183 184
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
185 186
}

187 188 189 190 191 192 193 194 195 196 197 198 199
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
200
    // Some models may have intentionally set "AnyLayout" for conv
201 202
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
203 204
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
205 206 207 208 209 210 211
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
212
void Conv2DOpMaker::Make() {
213 214 215 216
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
217 218 219 220 221 222
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
223
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
224
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
225 226
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
227 228
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
229
           "input image channels divided by the groups.");
230 231 232 233 234
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
235 236 237
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
238
           "Used with fuse_residual_connection fusion.")
239
      .AsDispensable();
Y
Yihua Xu 已提交
240 241
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
242
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
243 244 245 246
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
247
      .SetDefault({1, 1});
C
chengduoZH 已提交
248 249
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
250 251
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
252
                            "convolution operator.")
C
chengduoZH 已提交
253
      .SetDefault({0, 0});
L
liym27 已提交
254 255 256 257 258 259
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
260 261
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
262
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
263 264 265 266
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
267
      .SetDefault(1);
C
chengduoZH 已提交
268
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
269 270
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
271
                            "convolution operator.")
C
chengduoZH 已提交
272
      .SetDefault({1, 1});
273 274 275 276
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
277 278 279
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
280 281 282
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
283 284 285 286
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
287
      .SetDefault(false);
288 289 290 291 292
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
M
Michal Gallus 已提交
293 294
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
295 296 297 298 299 300
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
301 302 303 304 305 306 307 308
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
309 310 311 312 313
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
      .SetDefault(false);
314
  AddAttr<bool>("fuse_residual_connection",
315
                "(bool, default false) Only used in mkldnn kernel. Used "
316 317
                "whenever convolution output is as an input to residual "
                "connection.")
318
      .SetDefault(false);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
339 340 341 342 343 344
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
345
      .SetDefault("NCHW");
346 347 348 349 350 351 352 353
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
354
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
355 356
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
357
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
358
                "for cuDNN convolution or not, default is False.")
359
      .SetDefault(false);
L
liym27 已提交
360

C
chengduoZH 已提交
361
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
362 363
Convolution Operator.

C
chengduoZH 已提交
364
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
365
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
366
parameters is checked in the infer-shape.
L
liym27 已提交
367
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
368
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
369
the width of the feature.
370
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
371 372 373 374
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
375 376 377 378
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
379 380
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
381
  Output:
C
chengduoZH 已提交
382 383 384
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
385 386
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
387
$$
C
chengduoZH 已提交
388
)DOC");
Q
qingqing01 已提交
389
  Apply();
C
chengduoZH 已提交
390 391
}

Y
Yu Yang 已提交
392
void Conv3DOpMaker::Make() {
393 394 395 396
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
397 398
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
399
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
400 401
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
402 403 404
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
405
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
406
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
407 408
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
409 410 411
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
412
           "input image channels divided by the groups.");
413 414 415 416 417
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
418 419
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
420
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
421 422 423 424
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
425
      .SetDefault({1, 1, 1});
L
liym27 已提交
426 427 428 429 430 431
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
432
      .SetDefault({0, 0, 0});
L
liym27 已提交
433 434 435 436 437 438
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
439 440
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
441
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
442 443 444 445
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
446
      .SetDefault(1);
C
chengduoZH 已提交
447
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
448 449
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
450
                            "convolution operator.")
C
chengduoZH 已提交
451
      .SetDefault({1, 1, 1});
452 453 454 455
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
456 457 458
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
459 460 461 462 463
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
464 465
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
466 467 468 469 470 471 472 473
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
474 475 476 477 478
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
      .SetDefault(false);
479 480 481 482 483
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
484 485
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
486 487 488
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
489
      "the input will be transformed automatically. ")
L
liym27 已提交
490
      .SetDefault("NCDHW");
491 492 493
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
494 495 496 497 498 499 500
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
501
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
502 503
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
504
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
505
                "for cuDNN convolution or not, default is False.")
506
      .SetDefault(false);
C
chengduoZH 已提交
507
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
508 509
Convolution3D Operator.

C
chengduoZH 已提交
510
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
511
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
512
parameters is checked in the infer-shape.
L
liym27 已提交
513
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
514
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
515 516 517 518 519 520
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
521 522 523 524
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
525 526
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
527
  Output:
C
chengduoZH 已提交
528 529 530
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
531 532 533
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
534
  $$
C
chengduoZH 已提交
535
)DOC");
Q
qingqing01 已提交
536
  Apply();
C
chengduoZH 已提交
537 538
}

C
chengduoZH 已提交
539 540 541 542 543 544 545 546 547 548 549
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

550 551
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
552 553
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
554
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
555
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
556
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
557 558
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
559
#ifdef PADDLE_WITH_CUDA
560 561
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
562 563
  }
#endif
564 565 566
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
567
    const std::string data_format = ctx.Attr<std::string>("data_format");
568
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
569
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
570
    customized_type_value = kConvMKLDNNFP32;
571
  }
572
#endif
573

574 575 576
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
577
  return type;
578 579
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
606 607
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
608
 public:
H
hong 已提交
609
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
610

611
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
612
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
613 614 615 616
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
617

H
hong 已提交
618 619 620 621
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
622
  }
S
sneaxiy 已提交
623 624
};

H
hong 已提交
625 626
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
627
 public:
H
hong 已提交
628
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
629

630
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
631
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
632 633 634
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
635

H
hong 已提交
636 637
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
638

H
hong 已提交
639 640
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
641 642
    }

H
hong 已提交
643
    op->SetAttrMap(this->Attrs());
644 645 646
  }
};

Q
qingqing01 已提交
647 648 649 650
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
651 652
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
653
 public:
H
hong 已提交
654
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
655

656
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
657 658
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
659 660 661 662 663 664
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
665 666 667 668

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
669 670
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
671

L
lvmengsi 已提交
672
    op->SetOutput("DDOutput",
H
hong 已提交
673
                  ddx.empty()
674
                      ? this->EmptyInputGrad()
H
hong 已提交
675
                      : this->InputGrad(framework::GradVarName("Output")));
676 677 678 679
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
680

H
hong 已提交
681
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
682 683 684
  }
};

L
lvmengsi 已提交
685 686 687 688
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
689 690
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
691
 public:
H
hong 已提交
692
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
693

694
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
695 696
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
697 698 699 700 701 702
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
703

H
hong 已提交
704 705
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
706

L
lvmengsi 已提交
707
    op->SetOutput("DDOutput",
H
hong 已提交
708
                  ddx.empty()
709
                      ? this->EmptyInputGrad()
H
hong 已提交
710
                      : this->InputGrad(framework::GradVarName("Output")));
711 712 713 714
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
715

H
hong 已提交
716
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
717 718 719
  }
};

Q
qingqing01 已提交
720 721 722 723 724
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
725 726
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
727 728
    ctx->SetOutputDim("DDOutput", do_dims);
  }
729
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
730 731
    ctx->SetOutputDim("DFilter", w_dims);
  }
732
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
733 734 735 736 737 738 739 740 741
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
742
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
743 744 745 746 747
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
748
  }
Q
qingqing01 已提交
749
#endif
750 751 752
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
753 754 755
  return type;
}

C
chengduoZH 已提交
756 757 758 759
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
760
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
761 762 763 764 765 766
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
767
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
768 769

// depthwise convolution op
Y
Yang Yang 已提交
770
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
771 772 773
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
774
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
775

Y
Yang Yang 已提交
776
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
777 778 779 780 781 782
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
783
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
784

785 786
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
787
REGISTER_OP_CPU_KERNEL(
788
    depthwise_conv2d,
X
xzl 已提交
789 790 791 792
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
793
    depthwise_conv2d_grad,
X
xzl 已提交
794 795
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
796

C
chengduoZH 已提交
797
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
798 799 800 801 802 803
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
804 805 806 807
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
808 809

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
810 811 812 813 814 815
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
816 817 818 819
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);