paddle_pass_builder.cc 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21
#ifdef PADDLE_WITH_HIP
#include <miopen/miopen.h>
#endif
22

23
#include <glog/logging.h>
24

25
#include <algorithm>
26
#include <sstream>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
56
  deleted_passes_.insert(pass_type);
57 58 59 60 61 62 63 64 65 66
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

67 68 69 70 71 72
size_t PaddlePassBuilder::GetPassIndex(const std::string &pass_type) {
  auto iter = std::find(std::begin(passes_), std::end(passes_), pass_type);
  if (iter == std::end(passes_)) return -1;
  return std::distance(std::begin(passes_), iter);
}

73 74 75 76 77 78 79 80
void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
81 82
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
83 84
}

W
Wojciech Uss 已提交
85 86
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

87
const std::vector<std::string> kTRTSubgraphPasses({
Y
Yuanle Liu 已提交
88 89
  "trt_support_nhwc_pass",
      "adaptive_pool2d_convert_global_pass",       //
90 91 92 93 94 95 96 97 98
      "shuffle_channel_detect_pass",               //
      "quant_conv2d_dequant_fuse_pass",            //
      "delete_fill_constant_op_pass",              //
      "delete_quant_dequant_op_pass",              //
      "delete_quant_dequant_filter_op_pass",       //
      "trt_delete_weight_dequant_linear_op_pass",  //
      "delete_quant_dequant_linear_op_pass",       //
      "identity_scale_op_clean_pass",              //
      "add_support_int8_pass",                     //
99
      // "fc_fuse_pass",                        //
100
      "simplify_with_basic_ops_pass",                 //
101
      "trt_embedding_eltwise_layernorm_fuse_pass",    //
102
      "preln_embedding_eltwise_layernorm_fuse_pass",  //
103 104 105 106 107
      "delete_c_identity_op_pass",                    //
      "trt_multihead_matmul_fuse_pass_v2",            //
      "trt_multihead_matmul_fuse_pass_v3",            //
      "multihead_matmul_roformer_fuse_pass",          //
      "constant_folding_pass",                        //
108 109
      "trt_flash_multihead_matmul_fuse_pass",         //
      "trt_cross_multihead_matmul_fuse_pass",         //
110
      "vit_attention_fuse_pass",                      //
111 112
#if defined _WIN32  // Windows CI is TensorRT7.0. Remove this after upgrading.
#else
W
wenbin 已提交
113 114
      "trt_skip_layernorm_fuse_pass",          //
      "preln_skip_layernorm_fuse_pass",        //
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
#endif
      "layernorm_shift_partition_fuse_pass",         //
      "merge_layernorm_fuse_pass",                   //
      "preln_residual_bias_fuse_pass",               //
      "preln_layernorm_x_fuse_pass",                 //
      "reverse_roll_fuse_pass",                      //
      "conv_bn_fuse_pass",                           //
      "unsqueeze2_eltwise_fuse_pass",                //
      "trt_squeeze2_matmul_fuse_pass",               //
      "trt_flatten2_matmul_fuse_pass",               //
      "trt_map_matmul_v2_to_mul_pass",               //
      "trt_map_matmul_v2_to_matmul_pass",            //
      "trt_map_matmul_to_mul_pass",                  //
      "fc_fuse_pass",                                //
      "conv_elementwise_add_fuse_pass",              //
      "remove_padding_recover_padding_pass",         //
      "delete_remove_padding_recover_padding_pass",  //
132
      // "yolo_box_fuse_pass",      //
133 134
      "dense_fc_to_sparse_pass",                //
      "dense_multihead_matmul_to_sparse_pass",  //
W
wenbin 已提交
135 136 137 138 139 140 141
#if defined _WIN32  // Windows CI is TensorRT7.0. Remove this after upgrading.
#else
      "elementwise_groupnorm_act_pass",        //
      "preln_elementwise_groupnorm_act_pass",  //
#endif
      "tensorrt_subgraph_pass",  //
      "conv_bn_fuse_pass",       //
142 143
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
144 145 146
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
147 148
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
149 150
#endif
#endif
151 152 153
      "transpose_flatten_concat_fuse_pass",
});

D
denglin-github 已提交
154 155
const std::vector<std::string> kDlnneSubgraphPasses({
    "is_test_pass",                  //
M
ming1753 已提交
156
    "delete_dropout_op_pass",        //
D
denglin-github 已提交
157 158 159 160 161 162 163
    "simplify_with_basic_ops_pass",  //
    "conv_bn_fuse_pass",             //
    "depthwise_conv_bn_fuse_pass",   //
    "shuffle_channel_detect_pass",   //
    "dlnne_subgraph_pass",           //
});

石晓伟 已提交
164 165 166 167 168 169
const std::vector<std::string> kLiteSubgraphPasses({
#ifdef PADDLE_WITH_LITE
    "lite_subgraph_pass",
#endif
});

170 171 172 173
// TODO(inference): Most of the existing pass fusion operators do not
// support fp16/bf16 precision, temporarily use low precision pass to prevent
// running errors. After fusion operator supports low precision, delete this.
const std::vector<std::string> kGpuLowerPrecisionPasses{
G
gem5 已提交
174
    "map_op_to_another_pass",
175
    "identity_scale_op_clean_pass",
W
Wilber 已提交
176
    "simplify_with_basic_ops_pass",
177
    "silu_fuse_pass",
178
    "delete_quant_dequant_linear_op_pass",
179
    "delete_weight_dequant_linear_op_pass",
180 181 182 183
    "conv_bn_fuse_pass",
    "conv_eltwiseadd_bn_fuse_pass",
    "conv_elementwise_add_act_fuse_pass",
    "conv_elementwise_add2_act_fuse_pass",
M
ming1753 已提交
184
    "conv_elementwise_add_fuse_pass",
185
    "conv2d_fusion_layout_transfer_pass",
W
Wilber 已提交
186
    "multihead_matmul_fuse_pass_v2",
187 188 189 190
    "fused_multi_transformer_encoder_pass",
    "fused_multi_transformer_decoder_pass",
    "fused_multi_transformer_encoder_fuse_qkv_pass",
    "fused_multi_transformer_decoder_fuse_qkv_pass",
191
    "multi_devices_fused_multi_transformer_encoder_pass",
192 193
    "multi_devices_fused_multi_transformer_encoder_fuse_qkv_pass",
    "multi_devices_fused_multi_transformer_decoder_fuse_qkv_pass",
194
    "fuse_multi_transformer_layer_pass",
W
Wilber 已提交
195 196
    "gpu_cpu_map_matmul_v2_to_mul_pass",
    "gpu_cpu_map_matmul_v2_to_matmul_pass",
197
    "gpu_cpu_map_matmul_to_mul_pass",
198
    "fc_fuse_pass",
199
    // "fc_elementwise_layernorm_fuse_pass",
200
    "embedding_eltwise_layernorm_fuse_pass",
201
    "inplace_op_var_pass"};
202

203
const std::vector<std::string> kTrtLowerPrecisionPasses{
W
Wilber 已提交
204
    "simplify_with_basic_ops_pass",
205 206
    // "conv_bn_fuse_pass",
    // "conv_eltwiseadd_bn_fuse_pass",
207 208
    "trt_embedding_eltwise_layernorm_fuse_pass",
    "trt_skip_layernorm_fuse_pass",
209 210 211 212
    "trt_map_matmul_v2_to_mul_pass",
    "trt_map_matmul_v2_to_matmul_pass",
    "trt_map_matmul_to_mul_pass",
    "fc_fuse_pass",
213 214 215
    "tensorrt_subgraph_pass",
};

216 217 218 219 220 221 222
const std::vector<std::string> kCINNCompilerPasses{
    "gpu_cpu_map_matmul_v2_to_mul_pass",
    "gpu_cpu_map_matmul_v2_to_matmul_pass",
    "gpu_cpu_map_matmul_to_mul_pass",
    "build_cinn_pass",
};

223 224
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
G
gem5 已提交
225 226
    "map_op_to_another_pass",                                           //
        "identity_scale_op_clean_pass",                                 //
227
        "is_test_pass",                                                 //
228 229
        "simplify_with_basic_ops_pass",                                 //
        "delete_quant_dequant_linear_op_pass",                          //
230
        "delete_weight_dequant_linear_op_pass",                         //
231
        "constant_folding_pass",                                        //
232
        "silu_fuse_pass",                                               //
233 234 235 236
        "conv_bn_fuse_pass",                                            //
        "conv_eltwiseadd_bn_fuse_pass",                                 //
        "embedding_eltwise_layernorm_fuse_pass",                        //
        "multihead_matmul_fuse_pass_v2",                                //
237
        "vit_attention_fuse_pass",                                      //
238 239 240 241
        "fused_multi_transformer_encoder_pass",                         //
        "fused_multi_transformer_decoder_pass",                         //
        "fused_multi_transformer_encoder_fuse_qkv_pass",                //
        "fused_multi_transformer_decoder_fuse_qkv_pass",                //
242
        "multi_devices_fused_multi_transformer_encoder_pass",           //
243 244
        "multi_devices_fused_multi_transformer_encoder_fuse_qkv_pass",  //
        "multi_devices_fused_multi_transformer_decoder_fuse_qkv_pass",  //
245
        "fuse_multi_transformer_layer_pass",                            //
246 247 248 249 250 251 252 253 254 255
        "gpu_cpu_squeeze2_matmul_fuse_pass",                            //
        "gpu_cpu_reshape2_matmul_fuse_pass",                            //
        "gpu_cpu_flatten2_matmul_fuse_pass",                            //
        "gpu_cpu_map_matmul_v2_to_mul_pass",                            //
        "gpu_cpu_map_matmul_v2_to_matmul_pass",                         //
        "matmul_scale_fuse_pass",                                       //
        "multihead_matmul_fuse_pass_v3",                                //
        "gpu_cpu_map_matmul_to_mul_pass",                               //
        "fc_fuse_pass",                                                 //
        "fc_elementwise_layernorm_fuse_pass",                           //
256 257
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
258 259 260
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
261 262
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
263 264 265 266
#endif
        "conv_elementwise_add_fuse_pass",      //
#endif                                         //
        "transpose_flatten_concat_fuse_pass",  //
267
        "conv2d_fusion_layout_transfer_pass",  //
268 269
        "auto_mixed_precision_pass",           //
        "inplace_op_var_pass",                 // should be the last pass.
270 271 272 273 274
  });

  use_gpu_ = true;
}

275 276 277 278 279 280 281
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

W
Wojciech Uss 已提交
282 283
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
284 285
}

W
Wojciech Uss 已提交
286 287
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
288 289
}

290 291 292 293
void GpuPassStrategy::EnableMkldnnBfloat16() {
  LOG(ERROR) << "GPU not support MKL-DNN bfloat16";
}

B
baoachun 已提交
294 295 296 297
void GpuPassStrategy::EnableMkldnnInt8() {
  LOG(ERROR) << "GPU not support MKL-DNN int8";
}

P
Paulina Gacek 已提交
298 299 300 301
void GpuPassStrategy::DisableMkldnnFcPasses() {
  LOG(ERROR) << "GPU not support MKL-DNN fc";
}

302 303 304
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
305 306
  passes_.assign({"simplify_with_basic_ops_pass",  //
                  "layer_norm_fuse_pass",
307
                  "attention_lstm_fuse_pass",       //
308 309
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
310
                  "seqpool_cvm_concat_fuse_pass",  //
311
                  // "embedding_fc_lstm_fuse_pass", //
312
                  // TODO(wilber): fix correctness problem.
313
                  // "fc_lstm_fuse_pass",                    //
314 315 316 317
                  "mul_lstm_fuse_pass",                      //
                  "fc_gru_fuse_pass",                        //
                  "mul_gru_fuse_pass",                       //
                  "seq_concat_fc_fuse_pass",                 //
318 319 320
                  "gpu_cpu_squeeze2_matmul_fuse_pass",       //
                  "gpu_cpu_reshape2_matmul_fuse_pass",       //
                  "gpu_cpu_flatten2_matmul_fuse_pass",       //
H
heliqi 已提交
321
                  "matmul_v2_scale_fuse_pass",               //
322 323
                  "gpu_cpu_map_matmul_v2_to_mul_pass",       //
                  "gpu_cpu_map_matmul_v2_to_matmul_pass",    //
H
heliqi 已提交
324
                  "matmul_scale_fuse_pass",                  //
325
                  "gpu_cpu_map_matmul_to_mul_pass",          //
326 327 328 329 330 331 332 333
                  "fc_fuse_pass",                            //
                  "repeated_fc_relu_fuse_pass",              //
                  "squared_mat_sub_fuse_pass",               //
                  "conv_bn_fuse_pass",                       //
                  "conv_eltwiseadd_bn_fuse_pass",            //
                  "conv_transpose_bn_fuse_pass",             //
                  "conv_transpose_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                            //
334
                  "constant_folding_pass"});
Y
Yan Chunwei 已提交
335

336 337
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
338

339 340
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

W
Wojciech Uss 已提交
341 342 343 344 345 346
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

347
    for (auto &pass : std::vector<std::string>({
348
             "squeeze2_transpose2_onednn_fuse_pass",
349 350 351
             "depthwise_conv_mkldnn_pass",    //
             "conv_bn_fuse_pass",             // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
352 353
             "conv_affine_channel_mkldnn_fuse_pass",    //
             "conv_transpose_bn_fuse_pass",             //
354 355
             "conv_transpose_eltwiseadd_bn_fuse_pass",  //
             "conv_bias_mkldnn_fuse_pass",              //
356
             "conv_transpose_bias_mkldnn_fuse_pass",
357
             "interpolate_mkldnn_pass",
358 359
             // TODO(baoachun): Need to support 5-dimensional input.
             // "conv3d_bias_mkldnn_fuse_pass",  //
360
             "conv_elementwise_add_mkldnn_fuse_pass",
361 362 363 364 365 366
             "conv_activation_mkldnn_fuse_pass",           //
             "scale_matmul_fuse_pass",                     //
             "reshape_transpose_matmul_mkldnn_fuse_pass",  //
             "matmul_transpose_reshape_mkldnn_fuse_pass",  //
             "matmul_elementwise_add_mkldnn_fuse_pass",    //
             "matmul_activation_mkldnn_fuse_pass",         //
367
             // Disabled due to topology-dependent speed-up
P
Paulina Gacek 已提交
368 369
             "fc_mkldnn_pass",
             "fc_act_mkldnn_fuse_pass",
370
             "fc_elementwise_add_mkldnn_fuse_pass",   //
371 372
             "batch_norm_act_fuse_pass",              //
             "softplus_activation_mkldnn_fuse_pass",  //
373
             "shuffle_channel_mkldnn_detect_pass",    //
374
             "elt_act_mkldnn_fuse_pass",              //
375
             "layer_norm_onednn_optimization_pass",   //
376
             "operator_scale_onednn_fuse_pass",       //
377 378
             "operator_unsqueeze2_onednn_fuse_pass",  //
             "operator_reshape2_onednn_fuse_pass",    //
379
         })) {
W
Wojciech Uss 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

400 401
void CpuPassStrategy::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
402
  if (!use_mkldnn_bfloat16_) {
T
Tomasz Socha 已提交
403 404 405 406
    passes_.push_back("fc_mkldnn_pass");
    passes_.push_back("fc_act_mkldnn_fuse_pass");
    passes_.push_back("fc_elementwise_add_mkldnn_fuse_pass");

407 408
    passes_.push_back("cpu_bfloat16_placement_pass");
    passes_.push_back("cpu_bfloat16_pass");
409
    passes_.push_back("cpu_quantize_squash_pass");
410
  }
411 412 413 414 415 416
  use_mkldnn_bfloat16_ = true;
#else
  use_mkldnn_bfloat16_ = false;
#endif
}

B
baoachun 已提交
417 418 419 420
void CpuPassStrategy::EnableMkldnnInt8() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_int8_) {
    passes_.clear();
J
joanna.wozna.intel 已提交
421
    passes_.push_back("simplify_with_basic_ops_pass");
B
baoachun 已提交
422
    passes_.push_back("quant_dequant_mkldnn_pass");
423
    passes_.push_back("mkldnn_placement_pass");
424
    passes_.push_back("constant_folding_pass");
425
    passes_.push_back("squeeze2_transpose2_onednn_fuse_pass");
B
baoachun 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    passes_.push_back("layer_norm_fuse_pass");
    passes_.push_back("attention_lstm_fuse_pass");
    passes_.push_back("seqconv_eltadd_relu_fuse_pass");
    passes_.push_back("fc_lstm_fuse_pass");
    passes_.push_back("mul_lstm_fuse_pass");
    passes_.push_back("fc_gru_fuse_pass");
    passes_.push_back("mul_gru_fuse_pass");
    passes_.push_back("multi_gru_fuse_pass");
    passes_.push_back("multi_gru_seq_fuse_pass");
    passes_.push_back("seq_concat_fc_fuse_pass");
    passes_.push_back("gpu_cpu_squeeze2_matmul_fuse_pass");
    passes_.push_back("gpu_cpu_reshape2_matmul_fuse_pass");
    passes_.push_back("gpu_cpu_flatten2_matmul_fuse_pass");
    passes_.push_back("matmul_v2_scale_fuse_pass");
    passes_.push_back("squared_mat_sub_fuse_pass");
    passes_.push_back("is_test_pass");
    passes_.push_back("gpu_cpu_map_matmul_v2_to_mul_pass");
    passes_.push_back("gpu_cpu_map_matmul_v2_to_matmul_pass");
    passes_.push_back("matmul_scale_fuse_pass");
    passes_.push_back("gpu_cpu_map_matmul_to_mul_pass");
    passes_.push_back("repeated_fc_relu_fuse_pass");
    passes_.push_back("depthwise_conv_mkldnn_pass");
    passes_.push_back("conv_bn_fuse_pass");
    passes_.push_back("conv_eltwiseadd_bn_fuse_pass");
450
    passes_.push_back("conv_affine_channel_mkldnn_fuse_pass");
B
baoachun 已提交
451 452 453 454 455
    passes_.push_back("conv_transpose_bn_fuse_pass");
    passes_.push_back("conv_transpose_eltwiseadd_bn_fuse_pass");
    passes_.push_back("conv_bias_mkldnn_fuse_pass");
    passes_.push_back("conv_transpose_bias_mkldnn_fuse_pass");
    passes_.push_back("conv_elementwise_add_mkldnn_fuse_pass");
456
    passes_.push_back("conv_activation_mkldnn_fuse_pass");
B
baoachun 已提交
457 458 459 460
    passes_.push_back("fc_fuse_pass");
    passes_.push_back("repeated_fc_relu_fuse_pass");
    passes_.push_back("fc_mkldnn_pass");
    passes_.push_back("fc_act_mkldnn_fuse_pass");
461
    passes_.push_back("fc_elementwise_add_mkldnn_fuse_pass");
462
    passes_.push_back("matmul_transpose_reshape_mkldnn_fuse_pass");
B
baoachun 已提交
463 464 465 466 467
    passes_.push_back("batch_norm_act_fuse_pass");
    passes_.push_back("softplus_activation_mkldnn_fuse_pass");
    passes_.push_back("compute_propagate_scales_mkldnn_pass");
    passes_.push_back("scale_matmul_fuse_pass");
    passes_.push_back("reshape_transpose_matmul_mkldnn_fuse_pass");
468
    passes_.push_back("matmul_elementwise_add_mkldnn_fuse_pass");
469
    passes_.push_back("layer_norm_onednn_optimization_pass");
470
    passes_.push_back("operator_scale_onednn_fuse_pass");
471 472
    passes_.push_back("operator_unsqueeze2_onednn_fuse_pass");
    passes_.push_back("operator_reshape2_onednn_fuse_pass");
B
baoachun 已提交
473 474 475
    passes_.push_back("cpu_quantize_placement_pass");
    passes_.push_back("cpu_quantize_pass");
    passes_.push_back("cpu_quantize_squash_pass");
476 477
    passes_.push_back("int8_scale_calculation_mkldnn_pass");
    passes_.push_back("params_quantization_mkldnn_pass");
B
baoachun 已提交
478 479 480 481 482 483 484
  }
  use_mkldnn_int8_ = true;
#else
  use_mkldnn_int8_ = false;
#endif
}

P
Paulina Gacek 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
void CpuPassStrategy::DisableMkldnnFcPasses() {
#ifdef PADDLE_WITH_MKLDNN
  if (!disable_mkldnn_fc_passes_) {
    EraseFcMkldnnPasses();
  }
  disable_mkldnn_fc_passes_ = true;
#else
  disable_mkldnn_fc_passes_ = false;
#endif
}

void CpuPassStrategy::EraseFcMkldnnPasses() {
  std::vector<std::string> fc_passes_to_erase(
      {"fc_mkldnn_pass",
       "fc_act_mkldnn_fuse_pass",
       "fc_elementwise_add_mkldnn_fuse_pass"});
  for (const auto &pass : fc_passes_to_erase) {
    int idx = GetPassIndex(pass);
    if (idx != -1) {
      passes_.erase(std::begin(passes_) + idx);
    }
  }
}

J
jianghaicheng 已提交
509 510 511 512
IpuPassStrategy::IpuPassStrategy() : PassStrategy({}) {
  passes_.assign({"inference_process_pass"});
}

513
}  // namespace paddle