Fork自 PaddlePaddle / Paddle
// CHECK-LABEL: @main func @main() -> tensor<?xf32> {
%a = "pd.feed"() {name="input0"} : () -> tensor<?x3x256x256xf32>
%filter = "pd.constant"(){value = dense<1.000000e+00> : tensor<3x64x3x3xf32>} : () -> tensor<3x64x3x3xf32> %bias = "pd.constant"(){value = dense<1.000000e+00> : tensor<64xf32>} : () -> tensor<64xf32>
%scale = "pd.constant"(){value = dense<1.000000e+00> : tensor<64xf32>} : () -> tensor<64xf32> %bias2 = "pd.constant"(){value = dense<1.000000e+00> : tensor<64xf32>} : () -> tensor<64xf32> %mean = "pd.constant"(){value = dense<1.000000e+00> : tensor<64xf32>} : () -> tensor<64xf32> %var = "pd.constant"(){value = dense<1.000000e+00> : tensor<64xf32>} : () -> tensor<64xf32>
%c = "pd.conv2d"(%a, %filter, %bias) {} : (tensor<?x3x256x256xf32>, tensor<3x64x3x3xf32>, tensor<64xf32>) -> tensor<?x3x256x256xf32> %d = "pd.batch_norm"(%c, %scale, %bias2, %mean, %var) {} : (tensor<?x3x256x256xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>) -> tensor<?x3x256x256xf32>
"pd.fetch"(%d) {name="output"} :(tensor<?x3x256x256xf32>)->()
}