distributed_py.cc 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/Types.h"
26
#include "paddle/fluid/distributed/collective/reducer.h"
27 28 29 30 31 32 33
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

34
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
35 36 37
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

38 39 40 41
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif

42 43 44 45 46
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#endif

47 48 49 50 51
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
#endif

52 53 54 55 56 57 58
namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

59 60 61 62 63
std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
    py::handle py_tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
64 65
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters) {
66
  auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
67 68 69 70 71 72
  return std::make_shared<distributed::EagerReducer>(params,
                                                     group_indices,
                                                     is_sparse_gradient,
                                                     process_group,
                                                     group_size_limits,
                                                     find_unused_parameters);
73 74
}

75 76 77 78 79 80 81 82
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
using GlooOptions = paddle::distributed::ProcessGroupGloo::GlooOptions;
#endif

static std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";  // NOLINT

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

B
Baibaifan 已提交
101 102 103 104
  py::class_<distributed::BarrierOptions>(*m, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("place_ids", &distributed::BarrierOptions::place_ids);

105 106 107 108 109
  py::class_<distributed::ReduceOptions>(*m, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::ReduceOptions::reduce_op)
      .def_readwrite("source_root", &distributed::ReduceOptions::root_rank);

110 111 112 113 114 115
  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
116 117
          .def(
              "allreduce",
118 119
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
120 121 122 123 124 125 126 127 128
                 distributed::ReduceOp op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors, tensors, opts);
              },
129 130
              py::arg("tensor"),
              py::arg("op") = distributed::ReduceOp::SUM,
131 132 133 134
              py::call_guard<py::gil_scoped_release>())

          .def(
              "broadcast",
135 136
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
137 138 139 140 141 142 143 144 145
                 int source_rank) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::BroadcastOptions opts;
                opts.source_rank = source_rank;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Broadcast(tensors, tensors, opts);
              },
146 147
              py::arg("tensor"),
              py::arg("source_rank"),
148 149 150 151 152 153 154 155 156 157 158 159 160 161
              py::call_guard<py::gil_scoped_release>())

          .def(
              "barrier",
              [](distributed::ProcessGroup &self, std::vector<int> place_ids) {
                distributed::BarrierOptions opts;
                opts.place_ids = place_ids;
                return self.Barrier(opts);
              },
              py::arg("place_ids") = std::vector<int>{},
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send",
162 163
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
164 165 166 167 168 169 170
                 int dst) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors, dst);
              },
171 172
              py::arg("tensor"),
              py::arg("dst"),
173 174 175 176
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv",
177 178
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
179 180 181 182 183 184 185
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors, src);
              },
186 187
              py::arg("tensor"),
              py::arg("src"),
188 189 190 191
              py::call_guard<py::gil_scoped_release>())

          .def(
              "all_gather",
192 193
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
194 195 196 197 198 199 200 201 202 203 204
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllGather(in_tensors, out_tensors);
              },
205 206
              py::arg("in"),
              py::arg("out"),
207 208 209 210
              py::call_guard<py::gil_scoped_release>())

          .def(
              "alltoall",
211 212
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
213 214 215 216 217 218 219 220 221 222 223
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll(in_tensors, out_tensors);
              },
224 225
              py::arg("in"),
              py::arg("out"),
226 227 228 229
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce",
230 231 232 233
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 int dst,
                 distributed::ReduceOp op) {
234 235 236 237 238 239 240 241 242
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts;
                opts.reduce_op = op;
                opts.root_rank = dst;
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors, tensors, opts);
              },
243 244
              py::arg("tensor"),
              py::arg("dst"),
245 246 247 248 249
              py::arg("op") = distributed::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())

          .def(
              "scatter",
250 251 252 253
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int src) {
254 255 256 257 258 259 260 261 262 263 264 265
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ScatterOptions opts;
                opts.root_rank = src;
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.Scatter(in_tensors, out_tensors, opts);
              },
266 267 268
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
269
              py::call_guard<py::gil_scoped_release>());
270

271
#if defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)
272 273 274
  py::class_<distributed::ProcessGroupNCCL,
             std::shared_ptr<distributed::ProcessGroupNCCL>>(
      *m, "ProcessGroupNCCL", ProcessGroup)
275 276 277 278 279 280 281 282 283 284
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
                    const platform::CUDAPlace &,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
285 286
           py::call_guard<py::gil_scoped_release>());
#endif
287 288 289 290 291 292

#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
  py::class_<distributed::ProcessGroupHeter,
             std::shared_ptr<distributed::ProcessGroupHeter>>(
      *m, "ProcessGroupHeter", ProcessGroup)
293 294 295
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
296 297 298 299 300
#if defined(PADDLE_WITH_ASCEND_CL)
                    const platform::NPUPlace &,
#else
                    const platform::CUDAPlace &,
#endif
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
                    int,
                    int,
                    int,
                    int,
                    int,
                    bool,
                    std::string,
                    int,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("gid") = 0,
           py::arg("local_rank") = 0,
           py::arg("local_size") = 1,
           py::arg("gloo_rank") = 0,
           py::arg("gloo_size") = 1,
           py::arg("with_switch") = false,
           py::arg("switch_endpoint") = "",
           py::arg("src_rank") = "",
           py::arg("dst_rank") = "",
           py::call_guard<py::gil_scoped_release>());
324
#endif
325

326 327 328 329
#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<distributed::ProcessGroupHCCL,
             std::shared_ptr<distributed::ProcessGroupHCCL>>(
      *m, "ProcessGroupHCCL", ProcessGroup)
330 331 332 333 334 335 336 337 338 339
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
                    const platform::NPUPlace &,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
340
           py::call_guard<py::gil_scoped_release>());
341

342 343
#endif

344 345 346
  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
347 348
      .def("wait",
           &distributed::ProcessGroup::Task::Wait,
349 350
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
351 352
      .def("synchronize",
           &distributed::ProcessGroup::Task::Synchronize,
353 354
           py::call_guard<py::gil_scoped_release>());

355 356 357
#if defined(PADDLE_WITH_GLOO)
  py::class_<ProcessGroupGloo, std::shared_ptr<ProcessGroupGloo>>(
      *m, "ProcessGroupGloo", ProcessGroup)
358 359 360 361 362
      .def(py::init<const std::shared_ptr<paddle::distributed::Store> &,
                    int,
                    int,
                    const platform::CPUPlace &,
                    int,
363
                    std::shared_ptr<GlooOptions> &>(),
364
           py::call_guard<py::gil_scoped_release>())
365
      .def(py::init([](const std::shared_ptr<paddle::distributed::Store> &store,
366 367 368 369
                       int rank,
                       int world_size,
                       const platform::CPUPlace &place,
                       int gid) {
370 371 372 373 374 375 376 377
             auto opts = GlooOptions::create();
             char *ifname = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
             if (ifname && strlen(ifname) > 1) {
               opts->device = ProcessGroupGloo::createDeviceForInterface(
                   std::string(ifname));
             } else {
               opts->device = ProcessGroupGloo::createDefaultDevice();
             }
378 379
             return std::make_shared<ProcessGroupGloo>(
                 store, rank, world_size, place, gid, opts);
380
           }),
381 382 383 384 385
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
386
           py::call_guard<py::gil_scoped_release>())
387 388 389 390
      .def_static("create_default_device",
                  &ProcessGroupGloo::createDefaultDevice);
#endif

391 392
  m->def(
      "eager_assign_group_by_size",
393 394
      [](py::handle py_tensors,
         std::vector<bool> is_sparse_gradient,
395 396 397 398 399 400
         std::vector<size_t> group_size_limits,
         std::vector<int64_t> tensor_indices) {
        auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
        return distributed::Eager_AssignGroupBySize(
            tensors, is_sparse_gradient, group_size_limits, tensor_indices);
      },
401 402
      py::arg("tensors"),
      py::arg("is_sparse_gradient"),
403 404 405
      py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
      py::arg("tensor_indices") = std::vector<int64_t>{},
      py::call_guard<py::gil_scoped_release>());
406 407

  py::class_<distributed::EagerReducer,
408 409
             std::shared_ptr<distributed::EagerReducer>>(
      *m, "EagerReducer", R"DOC()DOC")
410
      .def(py::init(&CreateEagerReducer))
411 412 413 414 415 416
      .def(
          "prepare_for_backward",
          [](distributed::EagerReducer &self, py::handle py_tensors) {
            auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
            self.PrepareForBackward(params);
          },
417 418
          py::arg("tensors"),
          py::call_guard<py::gil_scoped_release>());
419 420 421 422
}

}  // end namespace pybind
}  // namespace paddle