analyzer_rnn1_tester.cc 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

L
luotao1 已提交
15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
16

17 18
DEFINE_bool(with_precision_check, true, "turn on test");

19 20 21 22 23 24 25 26 27 28 29
namespace paddle {
namespace inference {

using namespace framework;  // NOLINT

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<std::vector<float>> week_data_all, minute_data_all;
  std::vector<size_t> lod1, lod2, lod3;
  std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
      rnn_minute_datas;
T
Tao Luo 已提交
30
  size_t num_samples;  // total number of samples
31 32 33
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
34

35 36 37 38
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      data.week_data_all.assign(week_data_all.begin() + batch_iter,
                                week_data_all.begin() + batch_end);
      data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
                                  minute_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod1.push_back(0);
      data.lod2.push_back(0);
      data.lod3.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      CHECK(!data.week_data_all.empty());
      CHECK(!data.minute_data_all.empty());
      CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
      CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
        }
        data.rnn_week_datas.push_back(data.week_data_all[j]);
        data.rnn_minute_datas.push_back(data.minute_data_all[j]);
        // calculate lod
        data.lod1.push_back(data.lod1.back() +
                            data.link_step_data_all[j].size());
        data.lod3.push_back(data.lod3.back() + 1);
        for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
          data.lod2.push_back(data.lod2.back() +
                              data.link_step_data_all[j].size());
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      std::vector<std::vector<float>> link_step_data;
      std::vector<std::string> link_datas;
      split(data[0], '|', &link_datas);
      for (auto &step_data : link_datas) {
        std::vector<float> tmp;
        split_to_float(step_data, ',', &tmp);
        link_step_data.push_back(tmp);
      }
      // load week data
      std::vector<float> week_data;
      split_to_float(data[2], ',', &week_data);
      // load minute data
      std::vector<float> minute_data;
      split_to_float(data[1], ',', &minute_data);
      link_step_data_all.push_back(std::move(link_step_data));
      week_data_all.push_back(std::move(week_data));
      minute_data_all.push_back(std::move(minute_data));
    }
T
Tao Luo 已提交
105
    num_samples = num_lines;
106 107
  }
};
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
      week_tensor, minute_tensor;
  lod_attention_tensor.name = "data_lod_attention";
  init_zero_tensor.name = "cell_init";
  lod_tensor_tensor.name = "data";
  week_tensor.name = "week";
  minute_tensor.name = "minute";
  auto one_batch = data->NextBatch();
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
  lod_attention_tensor.shape.assign({1, 2});
  lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
  init_zero_tensor.shape.assign({batch_size, 15});
  init_zero_tensor.lod.assign({one_batch.lod3});
  lod_tensor_tensor.shape = rnn_link_data_shape;
  lod_tensor_tensor.lod.assign({one_batch.lod1});
  // clang-format off
  week_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
  week_tensor.lod.assign({one_batch.lod3});
  minute_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
  minute_tensor.lod.assign({one_batch.lod3});
  // clang-format on
  // assign data
  TensorAssignData<float>(&lod_attention_tensor,
                          std::vector<std::vector<float>>({{0, 0}}));
  std::vector<float> tmp_zeros(batch_size * 15, 0.);
  TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
  TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
  TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
  TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
  // Set inputs.
  auto init_zero_tensor1 = init_zero_tensor;
  init_zero_tensor1.name = "hidden_init";
  input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
                       init_zero_tensor1, lod_attention_tensor,
                       lod_tensor_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::FLOAT32;
  }
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
void PrepareZeroCopyInputs(ZeroCopyTensor *lod_attention_tensor,
                           ZeroCopyTensor *cell_init_tensor,
                           ZeroCopyTensor *data_tensor,
                           ZeroCopyTensor *hidden_init_tensor,
                           ZeroCopyTensor *week_tensor,
                           ZeroCopyTensor *minute_tensor,
                           DataRecord *data_record, int batch_size) {
  auto one_batch = data_record->NextBatch();
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
  lod_attention_tensor->Reshape({1, 2});
  lod_attention_tensor->SetLoD({one_batch.lod1, one_batch.lod2});

  cell_init_tensor->Reshape({batch_size, 15});
  cell_init_tensor->SetLoD({one_batch.lod3});

  hidden_init_tensor->Reshape({batch_size, 15});
  hidden_init_tensor->SetLoD({one_batch.lod3});

  data_tensor->Reshape(rnn_link_data_shape);
  data_tensor->SetLoD({one_batch.lod1});

  week_tensor->Reshape(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
  week_tensor->SetLoD({one_batch.lod3});

  minute_tensor->Reshape(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
  minute_tensor->SetLoD({one_batch.lod3});

  // assign data
  float arr0[] = {0, 0};
  std::vector<float> zeros(batch_size * 15, 0);
  std::copy_n(arr0, 2,
              lod_attention_tensor->mutable_data<float>(PaddlePlace::kCPU));
  std::copy_n(arr0, 2, data_tensor->mutable_data<float>(PaddlePlace::kCPU));
  std::copy_n(zeros.begin(), zeros.size(),
              cell_init_tensor->mutable_data<float>(PaddlePlace::kCPU));
  std::copy_n(zeros.begin(), zeros.size(),
              hidden_init_tensor->mutable_data<float>(PaddlePlace::kCPU));
  ZeroCopyTensorAssignData(data_tensor, one_batch.rnn_link_data);
  ZeroCopyTensorAssignData(week_tensor, one_batch.rnn_week_datas);
  ZeroCopyTensorAssignData(minute_tensor, one_batch.rnn_minute_datas);
}

void SetConfig(AnalysisConfig *cfg) {
206 207 208 209
  cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
L
luotao1 已提交
210 211 212
  if (FLAGS_zero_copy) {
    cfg->SwitchUseFeedFetchOps(false);
  }
T
Tao Luo 已提交
213
}
214

T
Tao Luo 已提交
215 216
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
217
  std::vector<PaddleTensor> input_slots;
T
Tao Luo 已提交
218 219 220 221 222 223 224
  int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}
225

T
Tao Luo 已提交
226 227
// Easy for profiling independently.
TEST(Analyzer_rnn1, profile) {
228
  AnalysisConfig cfg;
T
Tao Luo 已提交
229
  SetConfig(&cfg);
230 231
  cfg.DisableGpu();
  cfg.SwitchIrDebug();
232
  std::vector<std::vector<PaddleTensor>> outputs;
233

L
luotao1 已提交
234
  std::vector<std::vector<PaddleTensor>> input_slots_all;
T
Tao Luo 已提交
235
  SetInput(&input_slots_all);
236 237
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
T
Tao Luo 已提交
238
}
239

T
Tao Luo 已提交
240 241
// Check the fuse status
TEST(Analyzer_rnn1, fuse_statis) {
242
  AnalysisConfig cfg;
T
Tao Luo 已提交
243
  SetConfig(&cfg);
244

T
Tao Luo 已提交
245
  int num_ops;
246 247 248
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
T
Tao Luo 已提交
249 250 251 252 253 254 255
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
  EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2);  // bi-directional LSTM
  EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
  EXPECT_EQ(num_ops,
            13);  // After graph optimization, only 13 operators exists.
}
256

T
Tao Luo 已提交
257 258
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_rnn1, compare) {
259
  AnalysisConfig cfg;
T
Tao Luo 已提交
260 261 262 263
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
264 265
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
266 267
}

L
luotao1 已提交
268 269 270 271 272 273 274 275 276 277 278
// Compare Deterministic result
TEST(Analyzer_rnn1, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

T
Tao Luo 已提交
279 280
// Test Multi-Thread.
TEST(Analyzer_rnn1, multi_thread) {
281
  AnalysisConfig cfg;
T
Tao Luo 已提交
282
  SetConfig(&cfg);
283
  std::vector<std::vector<PaddleTensor>> outputs;
284

T
Tao Luo 已提交
285 286
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
287
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
288
                 input_slots_all, &outputs, 2 /* multi_thread */);
289 290
}

L
luotao1 已提交
291 292 293 294
// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
TEST(Analyzer_rnn1, compare_zero_copy) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
295

296 297 298
  AnalysisConfig cfg1;
  SetConfig(&cfg1);

L
luotao1 已提交
299 300 301 302 303
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  std::vector<std::string> outputs_name;
  outputs_name.emplace_back("final_output.tmp_1");
  CompareAnalysisAndZeroCopy(reinterpret_cast<PaddlePredictor::Config *>(&cfg),
304
                             reinterpret_cast<PaddlePredictor::Config *>(&cfg1),
L
luotao1 已提交
305
                             input_slots_all, outputs_name);
306 307 308 309
}

}  // namespace inference
}  // namespace paddle