auto_parallel_recompute.py 20.7 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

from .pass_base import PassBase, register_pass
from paddle.fluid import core, unique_name
from paddle.fluid import framework as framework
from paddle.fluid.backward import _append_grad_suffix_, _get_no_grad_set_name
from paddle.fluid.backward import ProgramStats, _rename_arg_, _find_op_path_
22 23 24 25 26 27 28 29 30 31 32
from paddle.distributed.auto_parallel.dist_attribute import (
    OperatorDistributedAttribute,
)
from paddle.distributed.auto_parallel.utils import (
    get_loss_op,
    set_var_dist_attr,
    set_dist_op_desc_original_id,
)
from paddle.distributed.auto_parallel.utils import (
    naive_set_dist_op_attr_for_program_by_mesh_and_mapping,
)
33 34


35 36 37 38 39 40
def _to_be_recomputed(op):
    return op.has_attr('op_namescope') and "/auto_parallel/rc_" in op.attr(
        'op_namescope'
    )


41 42
class RecomputeState(ProgramStats):
    def __init__(self, block, ops):
43
        super().__init__(block=block, ops=ops)
44 45
        self._block = block
        self._ops = ops
46
        # {varname: {as_input_ops: op_idx, as_output_ops: op_idx}}
47
        self.var_op_deps = {}
48 49
        # {segment_name: op_idx}
        self.seg_op_deps = {}
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    def build_stats(self):
        for i, op in enumerate(self._ops):
            for name in op.desc.input_arg_names():
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for name in op.desc.output_arg_names():
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
            if not _to_be_recomputed(op):
                continue

            seg_name = op.attr('op_namescope')
            if seg_name not in self.seg_op_deps:
                self.seg_op_deps[seg_name] = [i]
            else:
                assert (
                    self.seg_op_deps[seg_name][-1] + 1 == i
                ), "The recompute segment's ops should be continuous"
                self.seg_op_deps[seg_name].extend([i])

    def get_recompute_segments(
        self, checkpoints_list=None, no_recompute_segments=[]
    ):
        """get recompute segments and checkpoints"""
85
        segments = []
86 87 88 89 90 91
        checkpoints = checkpoints_list or []

        if len(checkpoints) == 0:
            # the segments is marked by `auto.recompute()` api
            for segment_idx in self.seg_op_deps.values():
                if len(segment_idx) == 1:
92
                    continue
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
                segments.append([segment_idx[0], segment_idx[-1] + 1])
                checkpoints.extend(self._ops[segment_idx[-1]].output_arg_names)
        else:
            # the segments is marked by `strategy.checkpoints` api
            start_idx = -1
            pre_segment_end_idx = -1
            while start_idx + 1 < len(checkpoints):
                if start_idx == -1:
                    ckpt_name = checkpoints[start_idx + 1]
                    if ckpt_name not in self.var_op_deps:
                        start_idx += 1
                        continue
                    op_idx_list = self.var_op_deps[ckpt_name][
                        "var_as_output_ops"
                    ]
                    if op_idx_list:
                        segments.append([0, max(op_idx_list) + 1])
110
                else:
111 112
                    flag, min_idx, max_idx = self.is_subgraph(
                        [checkpoints[start_idx]], [checkpoints[start_idx + 1]]
113
                    )
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
                    if flag:
                        min_idx = self._update_segment_start(
                            min_idx, pre_segment_end_idx
                        )
                        segments.append([min_idx, max_idx + 1])
                    else:
                        logging.info(
                            "Could not recompute op range [{}] - [{}] ".format(
                                min_idx, max_idx + 1
                            )
                        )
                start_idx += 1

        if no_recompute_segments:
            for i in reversed(sorted(no_recompute_segments)):
                assert i < len(
                    segments
                ), "the no_recompute_segments idx [{}] should be lower the number of segment [{}]".format(
                    i, len(segments)
                )
                segments.pop(i)
135 136 137

        for i, (idx1, idx2) in enumerate(segments):
            logging.info("recompute segment[{}]".format(i))
138 139 140 141 142 143 144 145 146 147 148 149 150 151
            logging.info(
                "segment start op: [{}]: [{}] [{}]".format(
                    self._ops[idx1].desc.type(),
                    self._ops[idx1].desc.input_arg_names(),
                    self._ops[idx1].desc.output_arg_names(),
                )
            )
            logging.info(
                "segment end op: [{}]: [{}] [{}]".format(
                    self._ops[idx2 - 1].desc.type(),
                    self._ops[idx2 - 1].desc.input_arg_names(),
                    self._ops[idx2 - 1].desc.output_arg_names(),
                )
            )
152

153 154 155 156
        return segments, checkpoints

    def is_recompute(self):
        return any([_to_be_recomputed(op) for op in self._ops])
157 158 159

    def modify_forward_desc_for_recompute(self, dist_context):
        """
160
        If program's foward part has 'dropout' op, this function will insert
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        a seed op before it to guarantee that two dropout op have the same outputs.
        """
        op_types = [op.desc.type() for op in self._ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while op_idx < len(self._ops):
            cur_op = self._ops[op_idx]
            if "grad" in cur_op.type:
                break
            if cur_op.type != "dropout":
                op_idx += 1
                continue
            if cur_op.input("Seed") is not None and len(cur_op.input("Seed")):
                op_idx += 1
                continue

            cur_op_dist_attr = dist_context.get_op_dist_attr_for_program(cur_op)
            # insert seed op to guarantee that two dropout op have the same outputs
            op_unique_name = unique_name.generate("seed")
182 183 184
            var_unique_name = unique_name.generate_with_ignorable_key(
                ".".join([op_unique_name, 'tmp'])
            )
185 186 187 188 189
            seed_var = self._block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
190 191
                stop_gradient=False,
            )
192 193 194 195

            # set new seed_var's dist_attr
            ref_dims_mapping = [-1]
            ref_process_mesh = cur_op_dist_attr.process_mesh
196 197 198 199 200 201 202 203 204
            seed_var_dist_attr = set_var_dist_attr(
                dist_context, seed_var, ref_dims_mapping, ref_process_mesh
            )

            seed = (
                0
                if cur_op.attr("fix_seed") is False
                else int(cur_op.attr("seed"))
            )
205 206 207 208 209
            seed_op = self._block._insert_op_without_sync(
                index=cur_op.idx,
                type="seed",
                inputs={},
                outputs={"Out": seed_var},
210 211
                attrs={"seed": seed, "force_cpu": True},
            )
212
            seed_op._set_attr('op_namescope', cur_op.attr('op_namescope'))
213 214
            # set new seed op's dist_attr
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
215 216
                seed_op, ref_process_mesh, ref_dims_mapping, dist_context
            )
217 218 219 220

            # modify dropout op's desc
            self._ops.insert(op_idx, seed_op)
            cur_op.desc.set_input("Seed", [var_unique_name])
221 222
            cur_op._remove_attr("fix_seed")
            cur_op._remove_attr("seed")
223 224 225
            cur_op_dist_attr.set_input_dist_attr(
                seed_var.name, seed_var_dist_attr
            )
226 227
            op_idx += 2

228 229
        self._block._sync_with_cpp()

230 231 232 233 234 235 236 237 238

def _find_op_index(block, cur_op):
    for idx in range(block.desc.op_size()):
        if cur_op.desc == block.desc.op(idx):
            return idx
    return -1


def _get_stop_gradients(program, no_grad_set):
239
    """get no grad var"""
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    if no_grad_set is None:
        no_grad_set = set()
    else:
        no_grad_set = _get_no_grad_set_name(no_grad_set)

    no_grad_set_name = set()
    for var in program.list_vars():
        if "@GRAD" in var.name:
            break
        if var.stop_gradient:
            no_grad_set_name.add(_append_grad_suffix_(var.name))
    no_grad_set_name.update(list(map(_append_grad_suffix_, no_grad_set)))
    return no_grad_set_name


255 256 257
def _add_needed_descs_to_block(
    descs, block, main_block, in_memory_vars, dist_context
):
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    """
    Get the recomputed ops which will insert the backward part
    """
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            set_dist_op_desc_original_id(new_op_desc, desc, dist_context)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


@register_pass("auto_parallel_recompute")
class RecomputePass(PassBase):
    def __init__(self):
289
        super().__init__()
290 291 292 293
        self.set_attr("checkpoints", None)
        self.set_attr("loss", None)
        self.set_attr("dist_context", None)
        self.set_attr("no_grad_set", None)
294
        self.set_attr("no_recompute_segments", [])
295 296 297 298 299 300 301 302 303 304 305

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
        if self.get_attr("loss") is None:
            return False
        return True

    def _check_conflict(self, other_pass):
        return True

306
    def _apply_single_impl(self, main_program, startup_program, context):
307
        checkpoints = self.get_attr("checkpoints")
308
        no_recompute_segments = self.get_attr("no_recompute_segments")
309 310 311 312
        loss = self.get_attr("loss")
        no_grad_set = self.get_attr("no_grad_set")
        self._dist_context = self.get_attr("dist_context")

313
        # 0. get op_path which is related to loss
314 315
        main_block = main_program.global_block()
        no_grad_set_name = _get_stop_gradients(main_program, no_grad_set)
316 317
        op_path = _find_op_path_(main_block, [loss], [], no_grad_set_name)

318
        # 1. build recompute state
319
        rc_state = RecomputeState(main_block, op_path)
320 321 322 323
        if not rc_state.is_recompute() and not checkpoints:
            return

        # 2. get the segments to be recomputed
324 325
        rc_state.modify_forward_desc_for_recompute(self._dist_context)
        rc_state.build_stats()
326 327 328 329 330
        checkpoints = rc_state.sort_checkpoints(checkpoints or [])
        segments, checkpoints = rc_state.get_recompute_segments(
            checkpoints, no_recompute_segments
        )
        if segments == [] or checkpoints == []:
331 332
            return

333
        # 3. get vars that should be hold in memory
334 335 336
        vars_should_be_hold = []
        for segment in segments:
            vars_should_be_hold.extend(
337 338
                rc_state.get_out_of_subgraph_vars(segment[0], segment[1])
            )
339
        cross_vars = set(vars_should_be_hold) - set(checkpoints)
340 341 342
        logging.info(
            "found [{}] vars which cross recompute segment: [{}],"
            "better checkpoints might be set to reduce those vars".format(
343 344 345
                len(cross_vars), cross_vars
            )
        )
346 347 348 349 350
        vars_should_be_hold.extend(rc_state.get_reserved_vars())
        vars_should_be_hold.extend(rc_state.get_input_nodes())
        vars_should_be_hold = list(set(vars_should_be_hold))
        vars_in_memory = vars_should_be_hold + checkpoints

351 352 353
        # 4. get the fwd ops desc to be recomputed.
        var_name_dict = {}  # varname --> varname.subprog_XXX
        ckpt_ops_dict = {}  # ckpt_op_id --> segment_descs
354 355
        buffer_block = main_block.program._create_block()
        for i, segment in enumerate(segments[::-1]):
356
            fwd_ops = op_path[segment[0] : segment[1]]
357 358 359 360 361
            var_suffix = ".subprog_%d" % i
            for op in fwd_ops:
                input_and_output_names = []
                input_and_output_names.extend(op.desc.input_arg_names())
                input_and_output_names.extend(op.desc.output_arg_names())
362 363 364
                cur_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(op)
                )
365 366 367 368 369 370 371 372 373
                assert cur_op_dist_attr is not None
                for name in input_and_output_names:
                    if main_block.var(name).persistable or name in checkpoints:
                        continue
                    if name in vars_should_be_hold:
                        continue
                    if name not in var_name_dict:
                        ref_process_mesh = cur_op_dist_attr.process_mesh
                        if name in op.desc.input_arg_names():
374 375 376
                            ref_dims_mapping = (
                                cur_op_dist_attr.get_input_dims_mapping(name)
                            )
377
                        else:
378 379 380
                            ref_dims_mapping = (
                                cur_op_dist_attr.get_output_dims_mapping(name)
                            )
381 382 383 384 385 386 387 388 389 390
                        # record recomputed var's old_name and new_name (old_name.subprog_XXX)
                        # create new var with new name
                        var_name_dict[name] = name + var_suffix
                        ref_var = main_block.var(name)
                        rc_var = main_block.create_var(
                            name=var_name_dict[name],
                            shape=ref_var.shape,
                            dtype=ref_var.dtype,
                            type=ref_var.type,
                            persistable=ref_var.persistable,
391 392
                            stop_gradient=ref_var.stop_gradient,
                        )
393
                        # set new recomputed var's dist attr
394 395 396 397 398 399
                        set_var_dist_attr(
                            self._dist_context,
                            rc_var,
                            ref_dims_mapping,
                            ref_process_mesh,
                        )
400
            # get recomputed segment's descs
401 402 403 404 405 406 407
            segment_descs = _add_needed_descs_to_block(
                fwd_ops,
                buffer_block,
                main_block,
                vars_in_memory,
                self._dist_context,
            )
408 409 410 411 412
            # rename recomputed ops' input and output var name
            for key in var_name_dict:
                _rename_arg_(segment_descs, key, var_name_dict[key])

            # NOTE: one forward op could be correspond to multiple xxx_grad op.
413
            # When traversing all grad_ops in reverse, need to set a flag to indicate
414 415
            # whether the ckpt and its segment_descs can be used.
            ckpt_op = op_path[segment[1] - 1]
416
            ckpt_ops_dict[ckpt_op.desc.original_id()] = [True, segment_descs]
417

418
        # 5. insert recomputed fwd ops into backward parse
419 420 421 422 423 424 425 426 427 428 429
        ops = main_block.ops
        loss_op = get_loss_op(main_block)
        loss_op_idx = _find_op_index(main_block, loss_op)
        dist_op_context = self._dist_context.dist_op_context
        assert loss_op_idx != -1
        # Traversing all grad_ops in reverse, and if the fwd op corresponding to reverse op is checkpoints,
        # segments ops should be inserted.
        for i in range(len(ops) - 1, loss_op_idx, -1):
            grad_op = ops[i]
            # remove some attrs of dropout_grad op's desc
            if grad_op.type == "dropout_grad":
430 431
                grad_op._remove_attr("fix_seed")
                grad_op._remove_attr("seed")
432 433 434

            # rename grad op's var_name which is not in 'vars_in_memory'
            for key in var_name_dict:
435 436 437 438
                if (
                    key
                    not in grad_op.input_arg_names + grad_op.output_arg_names
                ):
439
                    continue
440 441 442 443
                self.reset_op_dist_attr(grad_op, var_name_dict)
                _rename_arg_([grad_op.desc], key, var_name_dict[key])

            # insert recomputed ops
444 445 446
            original_id = grad_op.desc.original_id()
            if original_id in dist_op_context.grad_op_id_to_op_id:
                fwd_op_id = dist_op_context.grad_op_id_to_op_id[original_id]
447 448 449 450 451 452
                if fwd_op_id in ckpt_ops_dict and ckpt_ops_dict[fwd_op_id][0]:
                    idx = grad_op.idx
                    while idx - 1 >= 0 and ops[idx - 1].type == "sum":
                        idx -= 1
                    segment_descs = ckpt_ops_dict[fwd_op_id][1]
                    for _, op_desc in reversed(list(enumerate(segment_descs))):
453 454 455
                        rc_op = main_block._insert_op_without_sync(
                            idx, type='nop'
                        )
456
                        rc_desc = rc_op.desc
457
                        rc_desc.copy_from(op_desc)
458
                        rc_desc.set_original_id(rc_desc.id())
459 460
                        # set recomputed ops' dist attr
                        fwd_op_dist_attr = self._dist_context.get_op_dist_attr_for_program_with_id(
461 462
                            op_desc.original_id()
                        )
463
                        assert fwd_op_dist_attr is not None
464 465 466
                        self.set_op_dist_attr(
                            rc_op, fwd_op_dist_attr, var_name_dict
                        )
467 468 469

                    ckpt_ops_dict[fwd_op_id][0] = False

470
        main_program._sync_with_cpp()
471 472 473 474 475 476 477

    def reset_op_dist_attr(self, op, var_name_dict):
        op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None
        for input in op.desc.input_arg_names():
            if input in var_name_dict.keys():
                in_dist_attr = op_dist_attr.get_input_dist_attr(input)
478 479 480
                op_dist_attr.set_input_dist_attr(
                    var_name_dict[input], in_dist_attr
                )
481 482 483
        for output in op.desc.output_arg_names():
            if output in var_name_dict.keys():
                out_dist_attr = op_dist_attr.get_output_dist_attr(output)
484 485 486
                op_dist_attr.set_output_dist_attr(
                    var_name_dict[output], out_dist_attr
                )
487 488 489 490 491

    def set_op_dist_attr(self, op, old_dist_attr, var_name_dict):
        new_dist_attr = OperatorDistributedAttribute()
        new_dist_attr.is_recompute = True
        new_dist_attr.impl_idx = old_dist_attr.impl_idx
Z
zhaoyingli 已提交
492
        new_dist_attr.impl_type = old_dist_attr.impl_type
493 494 495 496
        new_dist_attr.process_mesh = old_dist_attr.process_mesh
        for input in old_dist_attr.inputs_dist_attrs.keys():
            if input in var_name_dict.keys():
                in_dist_attr = old_dist_attr.inputs_dist_attrs[input]
497 498 499
                new_dist_attr.set_input_dist_attr(
                    var_name_dict[input], in_dist_attr
                )
500 501 502 503 504 505
            else:
                in_dist_attr = old_dist_attr.inputs_dist_attrs[input]
                new_dist_attr.set_input_dist_attr(input, in_dist_attr)
        for output in old_dist_attr.outputs_dist_attrs.keys():
            if output in var_name_dict.keys():
                out_dist_attr = old_dist_attr.outputs_dist_attrs[output]
506 507 508
                new_dist_attr.set_output_dist_attr(
                    var_name_dict[output], out_dist_attr
                )
509 510 511 512
            else:
                out_dist_attr = old_dist_attr.outputs_dist_attrs[output]
                new_dist_attr.set_output_dist_attr(output, out_dist_attr)
        self._dist_context.set_op_dist_attr_for_program(op, new_dist_attr)