batch_norm_mkldnn_op.cc 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

22 23 24 25 26 27
using batch_norm_bwd = mkldnn::batch_normalization_backward;
using batch_norm_fwd = mkldnn::batch_normalization_forward;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
28 29
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
30
using platform::to_void_cast;
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

namespace {
template <typename T>
struct bn_type_traits {
  using op_type = T;
  using op_desc = typename op_type::desc;
  using op_prim = typename op_type::primitive_desc;
};

template <typename T, typename Container>
void copy_to_weights(T scale_begin, T scale_end, T shift_begin, T shift_end,
                     Container *c) {
  auto it = std::begin(*c);

  std::copy(scale_begin, scale_end, std::inserter(*c, it));
  std::copy(
      shift_begin, shift_end,
      std::inserter(*c, std::next(it, std::distance(scale_begin, scale_end))));
}

template <typename Op, typename... Args>
void run_batch_norm_op(Args &&... args) {
  Op batch_norm_op{args...};

  std::vector<mkldnn::primitive> pipeline;
  pipeline.push_back(batch_norm_op);
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

}  // namespace

template <typename T>
class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
69
    const bool fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *variance = ctx.Input<Tensor>("Variance");

    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *batch_mean = ctx.Output<Tensor>("SavedMean");
    auto *batch_variance = ctx.Output<Tensor>("SavedVariance");

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");

87 88 89 90 91 92 93 94 95 96 97 98
    PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                       x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input x tensor");

    const T *x_data = x->data<T>();
    const T *mean_data = mean->data<T>();
    const T *variance_data = variance->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
    T *mean_out_data = mean_out->mutable_data<T>(ctx.GetPlace());
    T *variance_out_data = variance_out->mutable_data<T>(ctx.GetPlace());
    T *batch_mean_data = nullptr;
    T *batch_variance_data = nullptr;
99 100

    if (!is_test) {
101 102
      batch_mean_data = batch_mean->mutable_data<T>(ctx.GetPlace());
      batch_variance_data = batch_variance->mutable_data<T>(ctx.GetPlace());
103 104 105 106 107
    }

    auto propagation = is_test == true ? mkldnn::prop_kind::forward_scoring
                                       : mkldnn::prop_kind::forward_training;

108 109 110 111
    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");
    const unsigned int ic = scale_tz[0];
112 113 114

    unsigned flags = mkldnn::use_scale_shift;
    if (is_test) flags |= mkldnn::use_global_stats;
115
    if (fuse_with_relu) flags |= mkldnn::fuse_bn_relu;
116

117 118 119 120 121 122
    // create mkldnn memory from input x tensor
    auto src_memory =
        memory({{{src_tz}, memory::data_type::f32, x->format()}, mkldnn_engine},
               to_void_cast(x_data));

    // create primitive descriptor for batch norm forward
123
    using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
124 125 126 127 128 129
    auto batch_norm_fwd_desc = bn_fwd_types::op_desc{
        propagation, src_memory.get_primitive_desc().desc(), epsilon, flags};
    std::shared_ptr<batch_norm_fwd::primitive_desc> batch_norm_fwd_pd =
        std::shared_ptr<batch_norm_fwd::primitive_desc>(
            new batch_norm_fwd::primitive_desc(batch_norm_fwd_desc,
                                               mkldnn_engine));
130

131 132 133 134
    // Save the pd to be used in backward pass
    const std::string key = ctx.op().Output("SavedMean");
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
    dev_ctx.SetBlob(key_batch_norm_fwd_pd, batch_norm_fwd_pd);
135 136 137 138 139 140 141 142 143

    // MKLDNN requires a single piece of memory for scale and shift/bias data
    const size_t scaleshift_size = 2 * ic;
    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);

    copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
                    shift->data<T>() + ic, &scaleshift_data);

144 145 146
    // crate mkldnn memory for weights(scale/shift)
    auto scaleshift_memory = memory(batch_norm_fwd_pd->weights_primitive_desc(),
                                    scaleshift_data.data());
147

148 149
    // create mkldnn memory for output y tensor
    auto dst_memory = memory(batch_norm_fwd_pd->dst_primitive_desc(), y_data);
150

151 152 153 154
    if (is_test) {
      // create mkldnn memory for stats (as input)
      auto mean_memory = memory(batch_norm_fwd_pd->mean_primitive_desc(),
                                to_void_cast(mean_data));
155
      auto variance_memory =
156 157
          memory(batch_norm_fwd_pd->variance_primitive_desc(),
                 to_void_cast(variance_data));
158 159

      run_batch_norm_op<typename bn_fwd_types::op_type>(
160 161
          *batch_norm_fwd_pd, src_memory,
          (const mkldnn::primitive::at &)mean_memory,
162
          (const mkldnn::primitive::at &)variance_memory, scaleshift_memory,
163
          dst_memory);
164
    } else {
165
      // create mkldnn memory for stats (as output)
166
      auto mean_memory =
167 168 169
          memory(batch_norm_fwd_pd->mean_primitive_desc(), batch_mean_data);
      auto variance_memory = memory(
          batch_norm_fwd_pd->variance_primitive_desc(), batch_variance_data);
170

171 172
      run_batch_norm_op<bn_fwd_types::op_type>(*batch_norm_fwd_pd, src_memory,
                                               scaleshift_memory, dst_memory,
173 174 175 176
                                               mean_memory, variance_memory);
    }

    if (!is_test) {
177 178 179 180 181 182 183 184 185
      // mkldnn only compute stats for current batch
      // so we need compute momentum stats via Eigen lib
      EigenVectorArrayMap<T> batch_mean_e(batch_mean_data, ic);
      EigenVectorArrayMap<T> batch_variance_e(batch_variance_data, ic);
      ConstEigenVectorArrayMap<T> mean_e(mean_data, ic);
      ConstEigenVectorArrayMap<T> variance_e{variance_data, ic};

      EigenVectorArrayMap<T> running_mean_e(mean_out_data, ic);
      EigenVectorArrayMap<T> running_variance_e(variance_out_data, ic);
186 187

      auto one_minus_momentum = 1. - momentum;
188 189 190
      running_mean_e = mean_e * momentum + batch_mean_e * one_minus_momentum;
      running_variance_e =
          variance_e * momentum + batch_variance_e * one_minus_momentum;
191
    }
192 193 194 195

    y->set_layout(DataLayout::kMKLDNN);
    y->set_format(
        (memory::format)dst_memory.get_primitive_desc().desc().data.format);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  }
};

template <typename T>
class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    const float epsilon = ctx.Attr<float>("epsilon");

    const auto *x = ctx.Input<Tensor>("X");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");
    const auto *batch_mean = ctx.Input<Tensor>("SavedMean");
    const auto *batch_variance = ctx.Input<Tensor>("SavedVariance");

    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *diff_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *diff_shift = ctx.Output<Tensor>(framework::GradVarName("Bias"));

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
                       diff_y->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input diff_y tensor");

    const T *x_data = x->data<T>();
    const T *diff_y_data = diff_y->data<T>();
    const T *batch_mean_data = batch_mean->data<T>();
    const T *batch_variance_data = batch_variance->data<T>();
    const T *scale_data = scale->data<T>();
    const T *shift_data = shift->data<T>();
    T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
    T *diff_scale_data = diff_scale->mutable_data<T>(ctx.GetPlace());
    T *diff_shift_data = diff_shift->mutable_data<T>(ctx.GetPlace());

    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto diff_src_tz = src_tz;
    auto dst_tz = src_tz;
    auto diff_dst_tz = dst_tz;
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");

    const unsigned int ic = scale_tz[0];

    // Retrieve bn_fwd_pd from device context
    const std::string key = ctx.op().Input("SavedMean");
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
    auto batch_norm_fwd_pd =
        std::static_pointer_cast<batch_norm_fwd::primitive_desc>(
            dev_ctx.GetBlob(key_batch_norm_fwd_pd));
    PADDLE_ENFORCE(batch_norm_fwd_pd != nullptr,
                   "Fail to find batch_norm_fwd_pd in device context");
250

251
    using bn_bwd_types = bn_type_traits<mkldnn::batch_normalization_backward>;
252

253 254 255 256 257
    // create mkldnn memory from input diff_y tensor
    auto user_diff_dst_memory =
        memory({{{diff_dst_tz}, memory::data_type::f32, diff_y->format()},
                mkldnn_engine},
               to_void_cast(diff_y_data));
258

259 260 261 262
    // create mkldnn memory from input x tensor
    auto src_memory =
        memory({{{src_tz}, memory::data_type::f32, x->format()}, mkldnn_engine},
               to_void_cast(x_data));
263

264 265 266
    // for diff_dst, try to use same format as dst in forward pass
    auto diff_dst_pd = batch_norm_fwd_pd.get()->dst_primitive_desc();
    auto diff_dst_md = diff_dst_pd.desc();
267

268 269
    // create primitive descriptor for batch norm backward
    unsigned flags = mkldnn::use_scale_shift;
270
    auto batch_norm_bwd_desc = bn_bwd_types::op_desc{
271 272
        mkldnn::prop_kind::backward, diff_dst_md,
        src_memory.get_primitive_desc().desc(), epsilon, flags};
273
    auto batch_norm_bwd_pd = bn_bwd_types::op_prim{
274 275 276 277 278 279 280 281 282 283 284
        batch_norm_bwd_desc, mkldnn_engine, *batch_norm_fwd_pd};

    // reorder user_diff_dst if it's not in preferred format
    auto diff_dst_memory = user_diff_dst_memory;
    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
    if (diff_dst_pd != user_diff_dst_memory.get_primitive_desc()) {
      diff_dst_memory = memory(diff_dst_pd);
      reorder_diff_dst = reorder(user_diff_dst_memory, diff_dst_memory);
      is_diff_dst_reordered = true;
    }
285

286 287 288 289 290
    // create mkldnn memory for input tensors (src/mean/variance)
    auto mean_memory = memory(batch_norm_bwd_pd.mean_primitive_desc(),
                              to_void_cast(batch_mean_data));
    auto variance_memory = memory(batch_norm_bwd_pd.variance_primitive_desc(),
                                  to_void_cast(batch_variance_data));
291

292
    // MKLDNN requires a single piece of memory for scale and shift/bias data
293 294 295 296
    const size_t scaleshift_size = 2 * ic;

    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);
297 298
    copy_to_weights(scale_data, scale_data + ic, shift_data, shift_data + ic,
                    &scaleshift_data);
299

300 301 302
    // create mkldnn memory for input tensors (scale/shift)
    auto scaleshift_memory = memory(batch_norm_bwd_pd.weights_primitive_desc(),
                                    scaleshift_data.data());
303

304
    // create mkldnn memory for output diff weights (combined scale/shift)
305 306 307
    std::vector<T> diff_scaleshift_data;
    diff_scaleshift_data.reserve(scaleshift_size);
    auto diff_scaleshift_memory =
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        memory(batch_norm_bwd_pd.diff_weights_primitive_desc(),
               diff_scaleshift_data.data());

    // here assume diff_src is in the same format of src
    auto diff_src_memory = memory(src_memory.get_primitive_desc(), diff_x_data);

    // finally create batch_norm backward primitive
    auto batch_norm_bwd_prim =
        batch_norm_bwd(batch_norm_bwd_pd, src_memory, mean_memory,
                       variance_memory, diff_dst_memory, scaleshift_memory,
                       diff_src_memory, diff_scaleshift_memory);

    // execute optional reorder and batch_norm backward primitive
    std::vector<primitive> pipeline;
    if (is_diff_dst_reordered) pipeline.push_back(reorder_diff_dst);
    pipeline.push_back(batch_norm_bwd_prim);
    stream(stream::kind::eager).submit(pipeline).wait();

    // copy back diff sacle/shift to output tensors (diff scale/shift)
    diff_scaleshift_data.resize(scaleshift_size);
328
    auto it = std::begin(diff_scaleshift_data);
329
    std::copy(it, std::next(it, ic), diff_scale_data);
330
    std::copy(std::next(it, ic), std::end(diff_scaleshift_data),
331 332 333 334 335 336 337
              diff_shift_data);

    // set layout/format of output tensors
    diff_x->set_layout(DataLayout::kMKLDNN);
    diff_x->set_format((memory::format)diff_src_memory.get_primitive_desc()
                           .desc()
                           .data.format);
338 339 340 341 342 343
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
344
REGISTER_OP_KERNEL(batch_norm, MKLDNN, ::paddle::platform::CPUPlace,
345
                   ops::BatchNormMKLDNNOpKernel<float>);
346
REGISTER_OP_KERNEL(batch_norm_grad, MKLDNN, ::paddle::platform::CPUPlace,
347
                   ops::BatchNormMKLDNNGradOpKernel<float>);