slice_op.cc 16.4 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
#include <algorithm>
17
#include <memory>
18
#include <string>
W
whs 已提交
19 20 21 22 23 24 25 26 27 28 29
#include <vector>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

30 31 32 33 34 35
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                      "Input (Input) of slice op should not be null.");

    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output (Out) of slice op should not be null.");
36 37 38 39 40 41 42 43 44 45 46 47 48 49
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      PADDLE_ENFORCE_EQ(axes.size(), 1,
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
50 51
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
52 53 54 55 56 57
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
W
whs 已提交
58
    auto in_dims = ctx->GetInputDim("Input");
59 60
    PADDLE_ENFORCE_LT(in_dims.size(), 7,
                      "The rank of input should be less than 7.");
W
whs 已提交
61
    framework::DDim out_dims(in_dims);
62

W
whs 已提交
63 64
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
65
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
H
Hongyu Liu 已提交
66
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
W
whs 已提交
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    auto starts_size = starts.size();
    auto ends_size = ends.size();
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

    if (ctx->HasInputs("StartsTensorList")) {
      auto StartsTensorList = ctx->Inputs("StartsTensorList");
      PADDLE_ENFORCE_GT(StartsTensorList.size(), 0,
                        "StartsTensorList size can't be zero");
      starts_size = StartsTensorList.size();
    }
    if (ctx->HasInputs("EndsTensorList")) {
      auto EndsTensorList = ctx->Inputs("EndsTensorList");
      PADDLE_ENFORCE_GT(EndsTensorList.size(), 0,
                        "EndsTensorList size can't be zero");
      ends_size = EndsTensorList.size();
    }

    if (ctx->HasInput("StartsTensor") == false) {
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
          "The size of starts must be equal to the size of axes.");
    }
    if (ctx->HasInput("EndsTensor") == false) {
      PADDLE_ENFORCE_EQ(ends_size, axes.size(),
                        "The size of ends must be equal to the size of axes.");
    }

W
whs 已提交
99 100
    int dim_value, start, end;
    for (size_t i = 0; i < axes.size(); ++i) {
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
      PADDLE_ENFORCE_LT(static_cast<int>(axes[i]), in_dims.size(),
                        "The index of dimension in axes must be less "
                        "than the size of input shape.");
      if (infer_flags[i] == -1) {
        out_dims[axes[i]] = -1;
      } else {
        // infer out_dim shape
        dim_value = out_dims[axes[i]];
        if (dim_value > 0) {
          start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
          end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
          start = std::max(start, 0);
          end = std::max(end, 0);
          end = std::min(end, dim_value);
          PADDLE_ENFORCE_GT(end, start, "end should greater than start");
          out_dims[axes[i]] = end - start;
        }
H
Hongyu Liu 已提交
118
      }
W
whs 已提交
119
    }
H
Hongyu Liu 已提交
120 121 122 123
    // generate new shape
    if (decrease_axis.size() > 0) {
      std::vector<int> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
124
        if (ctx->IsRuntime() && infer_flags[i] != -1) {
H
Hongyu Liu 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
          PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
                            "decrease dim should be 1");
        }
        out_dims[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims.size(); ++i) {
        if (out_dims[i] != 0) {
          new_out_shape.push_back(out_dims[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }

      out_dims = framework::make_ddim(new_out_shape);
    }
W
whs 已提交
142
    ctx->SetOutputDim("Out", out_dims);
J
jerrywgz 已提交
143 144 145
    if (axes[0] != 0) {
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
146 147 148 149
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
150
      const framework::ExecutionContext &ctx) const override {
151 152 153 154 155 156 157
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
          in_tensor.IsInitialized(), true,
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
158 159 160 161
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
        return framework::OpKernelType(in_tensor.type(), ctx.device_context());
      }
162 163
      return framework::OpKernelType(in_tensor.type(), in_tensor.place());
    }
164
    return framework::OpKernelType(
165
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
166 167 168 169 170 171 172 173 174 175 176 177
  }
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
W
whs 已提交
178 179 180
  }
};

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
    auto not_decrease = boost::get<std::vector<int>>(decrease_axis).size() == 0;
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
200 201 202
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
228 229 230 231 232 233 234
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
235 236 237 238 239
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
240
    AddAttr<std::vector<int>>(
241 242
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
243 244
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
W
whs 已提交
245 246 247 248 249
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
250
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
251
end dimension for each axis in the list of axes, it uses this information
252 253
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
254
of that dimension. If the value passed to start or end is larger than
255 256
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
257
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
258 259
Following examples will explain how slice works:

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
278 279 280 281
)DOC");
  }
};

282 283 284 285
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

286 287 288 289
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true, "Input should not be null");
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) should not be null");
290 291 292 293 294 295 296 297
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
298 299 300 301 302 303
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
304
  framework::OpKernelType GetExpectedKernelType(
305
      const framework::ExecutionContext &ctx) const override {
306 307 308
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
309 310 311 312 313 314 315 316 317 318 319 320
  }
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
321
  }
322 323
};

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
339 340
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
341
 public:
H
hong 已提交
342
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
343 344

 protected:
345
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
346
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
347 348 349 350 351 352 353 354 355 356 357 358
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
359 360 361
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
362 363 364 365
    bind->SetType("slice_grad");
  }
};

366 367 368 369 370 371
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
372
  void Apply(GradOpPtr<T> bind) const override {
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

392
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
393
                                    "Input");
394

W
whs 已提交
395 396 397 398 399
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
H
hong 已提交
400
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
401 402
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
403
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
404 405
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
406
                  ops::SliceOpGradNoNeedBufferVarsInferer,
407
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
408 409 410 411 412 413

REGISTER_OP_CPU_KERNEL(
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>);
414 415 416 417 418 419

REGISTER_OP_CPU_KERNEL(
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>);