nn.py 252.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
112
    'margin_rank_loss',
X
Xin Pan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
165
       is_test=False,
166
       name=None):
Y
Yu Yang 已提交
167
    """
168
    **Fully Connected Layer**
Y
Yu Yang 已提交
169

170 171 172 173 174 175 176 177
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
178
    to the output as well.
C
caoying03 已提交
179

C
caoying03 已提交
180
    This process can be formulated as follows:
181 182 183

    .. math::

184
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
185 186 187

    In the above equation:

C
caoying03 已提交
188 189 190 191
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
192
    * :math:`Act`: The activation function.
C
caoying03 已提交
193
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
194 195

    Args:
R
ranqiu 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
211 212
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
213
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
214
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
215
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
216

217
    Returns:
F
fengjiayi 已提交
218
        Variable: The transformation result.
219 220

    Raises:
C
caoying03 已提交
221
        ValueError: If rank of the input tensor is less than 2.
222 223 224 225

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
226
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
227
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
228
    """
C
caoying03 已提交
229

C
caoying03 已提交
230
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
231 232 233 234

    dtype = helper.input_dtype()

    mul_results = []
235 236
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
237 238 239
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
240

Y
Yu Yang 已提交
241
        w = helper.create_parameter(
242 243
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
244
        helper.append_op(
245 246 247
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
248
            outputs={"Out": tmp},
M
mozga-intel 已提交
249 250
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
251 252 253 254
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
255
    else:
256 257
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
258 259 260
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
261
            attrs={"use_mkldnn": False})
262 263 264 265
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
266 267


268 269 270
def embedding(input,
              size,
              is_sparse=False,
271
              is_distributed=False,
272 273 274
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
275
    """
276 277
    **Embedding Layer**

278
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
279 280
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
281 282 283

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
284 285

    Args:
286 287 288 289 290
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
291
        is_distributed(bool): Whether to run lookup table from remote parameter server.
292 293
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
294
            with zeros whenever lookup encounters it in :attr:`input`. If
295
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
296 297
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
298
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
299

300 301 302
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
303

304 305
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
306

C
chengduoZH 已提交
307
          dict_size = len(dataset.ids)
308
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
309
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
310 311 312 313 314 315
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
316 317
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
318 319 320 321 322
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
323 324 325 326 327
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
328 329 330
    return tmp


Y
yi.wu 已提交
331
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
332 333
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
334 335
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
336 337 338 339 340 341 342
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
343 344
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
345
    """
Y
yi.wu 已提交
346
    ${comment}
Y
Yibing Liu 已提交
347 348

    Args:
Y
yi.wu 已提交
349 350
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
351 352 353 354 355 356 357
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

358
        param_attr(ParamAttr|None): The parameter attribute for the learnable
359
                               hidden-hidden weights.
Y
Yibing Liu 已提交
360 361 362

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
363 364
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
365
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
366 367 368
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
369

370
                              1. `use_peepholes = False`
Y
yi.wu 已提交
371 372
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
373
                              2. `use_peepholes = True`
Y
yi.wu 已提交
374
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
375
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
376
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
377 378 379 380 381 382 383 384
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
385 386

    Returns:
Y
Yibing Liu 已提交
387 388
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
389

Y
Yibing Liu 已提交
390
    Examples:
Y
Yibing Liu 已提交
391 392
        .. code-block:: python

Y
Yibing Liu 已提交
393 394
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
395
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
396 397
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
398
    """
399

Y
Yu Yang 已提交
400
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
401
    size = size // 4
Y
Yu Yang 已提交
402 403 404 405 406 407 408 409 410 411 412 413
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
414 415 416 417 418 419 420 421 422 423
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
424 425 426

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
427
        inputs=inputs,
Y
Yu Yang 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
444 445 446 447 448 449 450 451 452 453 454
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
455 456
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
457 458 459
    """
    **Dynamic LSTMP Layer**

460 461 462 463 464 465
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
466 467 468 469 470

    The formula is as follows:

    .. math::

471
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
472

473
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
474

475
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
476

477
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
478

479
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
480

481
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
482

483
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
484

Y
Yibing Liu 已提交
485 486 487 488 489 490
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
491
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
492
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
493
          bias vector).
Y
Yibing Liu 已提交
494 495 496
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
497
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
498
    * :math:`h`: The hidden state.
499
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
500 501
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
502
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
503
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
504
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
505 506
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
507 508 509 510

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
511

Y
Yibing Liu 已提交
512 513 514 515 516 517 518 519 520 521 522 523
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
524
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
525 526
                               hidden-hidden weight and projection weight.

527 528
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
529 530
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
531 532
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
533 534
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
535 536 537 538 539 540
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
541
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
542 543 544
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
545
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
546 547 548 549 550 551 552 553 554
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
555
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
556 557
                              default "tanh".
        proj_activation(str): The activation for projection output.
558
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
559 560
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
561 562
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
563 564

    Returns:
565 566 567 568
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
569 570

    Examples:
571

Y
Yibing Liu 已提交
572 573
        .. code-block:: python

574 575 576 577
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
578
            hidden_dim, proj_dim = 512, 256
579
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
580
                                     act=None, bias_attr=None)
581 582 583
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
584 585 586 587
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
588
    """
589

Y
Yibing Liu 已提交
590
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
591
    size = size // 4
Y
Yibing Liu 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
636 637 638 639 640 641 642 643 644
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
645
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
646

647
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
648
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
649

G
guosheng 已提交
650 651 652 653 654 655 656 657 658
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
659

G
guosheng 已提交
660
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
661

G
guosheng 已提交
662
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
663 664
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
665 666 667 668
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
669
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
670 671

    Args:
672 673
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
674
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
675
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
676 677
            is the hidden size.
        size(int): The dimension of the gru cell.
678
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
679 680
            hidden-hidden weight matrix. Note:

681
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
682
              :math:`D` is the hidden size.
683
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
684
              The first part are weights of the update gate and reset gate with
685
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
686
              candidate hidden state with shape :math:`(D \\times D)`.
687 688 689 690 691 692 693 694 695 696 697 698

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
699
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
700 701 702
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
703
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
704
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
705 706 707 708
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
709 710

    Returns:
G
guosheng 已提交
711
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
712
            and sequence length is the same with the input.
713

G
guosheng 已提交
714
    Examples:
715

G
guosheng 已提交
716 717
        .. code-block:: python

718 719 720 721
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
722
            hidden_dim = 512
723
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
724 725 726 727 728 729 730 731 732 733
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
734
    batch_size = input.shape[0]
G
guosheng 已提交
735 736 737
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
738 739 740
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
764 765 766
def gru_unit(input,
             hidden,
             size,
767 768
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
769
             activation='tanh',
770
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
771
    """
772
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
773

774 775
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
776

777
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
778

779
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
780

781
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
782 783

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
784 785 786
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
787 788
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

789 790
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
791 792 793
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
794 795 796

    Args:
        input (Variable): The fc transformed input value of current step.
797
        hidden (Variable): The hidden value of gru unit from previous step.
798
        size (integer): The input dimension value.
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
820 821 822 823
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
824

825 826 827 828 829 830
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
831

832
             # assuming we have x_t_data and prev_hidden of size=10
833
             x_t = fluid.layers.fc(input=x_t_data, size=30)
834 835
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
836 837 838 839 840 841 842 843 844 845 846 847

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
848
    size = size // 3
Y
Yu Yang 已提交
849 850

    # create weight
851 852
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
853

854 855 856 857
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
858
    # create bias
859
    if helper.bias_attr:
Y
Yu Yang 已提交
860 861 862
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
863
        inputs['Bias'] = bias
Y
Yu Yang 已提交
864 865 866

    helper.append_op(
        type='gru_unit',
867
        inputs=inputs,
Y
Yu Yang 已提交
868 869 870 871 872 873
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
874 875
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
876 877 878 879 880
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
881
@templatedoc()
882
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
883 884 885 886 887 888 889
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
890
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
891 892 893 894
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
895 896 897
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
898 899

    """
Y
Yu Yang 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
925
@templatedoc()
926
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
927 928 929 930 931
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
932

Y
yuyang18 已提交
933
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
934

Y
yuyang18 已提交
935 936 937
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
938
        Variable: ${viterbi_path_comment}
939

Y
yi.wu 已提交
940 941 942 943 944
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
945
    """
Y
Yu Yang 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
959
@templatedoc()
F
fengjiayi 已提交
960
def cos_sim(X, Y):
Y
Yu Yang 已提交
961
    """
Y
yi.wu 已提交
962 963 964
    ${comment}

    Args:
965 966
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
967

Y
yi.wu 已提交
968
    Returns:
969
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
970
    """
F
fengjiayi 已提交
971
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


985
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
986 987 988 989 990
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
991
    training. The dropout operator randomly sets (according to the given dropout
992 993 994 995
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
996 997
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
998 999 1000 1001 1002 1003 1004
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
1005 1006

    Returns:
1007
        Variable: A tensor variable is the shape with `x`.
1008 1009

    Examples:
1010

1011 1012
        .. code-block:: python

1013 1014
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1015 1016
    """

F
fengjiayi 已提交
1017
    helper = LayerHelper('dropout', **locals())
1018 1019
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1020 1021 1022 1023

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1024 1025 1026 1027 1028
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1029 1030 1031 1032 1033 1034
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1035 1036 1037
    return out


1038
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1039
    """
Y
Yibing Liu 已提交
1040 1041
    **Cross Entropy Layer**

1042 1043 1044
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1045 1046

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1047
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1048

Y
Yibing Liu 已提交
1049
        .. math::
Y
yangyaming 已提交
1050

Y
Yibing Liu 已提交
1051 1052 1053
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1054 1055
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1056 1057 1058 1059 1060

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1061
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1062 1063 1064
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1065 1066
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1067
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1068

Y
Yibing Liu 已提交
1069
    Args:
Y
yangyaming 已提交
1070
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1071 1072 1073 1074
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1075
        label (Variable|list): the ground truth which is a 2-D tensor. When
1076 1077 1078 1079
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1080
        soft_label (bool): a flag indicating whether to
1081
                                           interpretate the given labels as soft
1082
                                           labels. Default: `False`.
M
minqiyang 已提交
1083 1084
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1085
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1086 1087 1088 1089 1090

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1091 1092 1093 1094 1095
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1096 1097 1098 1099 1100 1101

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1102
    """
F
fengjiayi 已提交
1103
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1104 1105 1106 1107 1108 1109
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1110 1111
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1112 1113 1114
    return out


F
fengjiayi 已提交
1115
def square_error_cost(input, label):
Y
Yu Yang 已提交
1116
    """
1117 1118
    **Square error cost layer**

1119 1120
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1135 1136
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1137 1138

    Returns:
G
guosheng 已提交
1139
        Variable: The tensor variable storing the element-wise squared error \
1140
                  difference of input and label.
1141 1142 1143 1144 1145 1146 1147 1148

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1149
    """
F
fengjiayi 已提交
1150
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1160 1161
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1162 1163 1164
    return square_out


Y
yi.wu 已提交
1165
@templatedoc()
Y
Yu Yang 已提交
1166 1167 1168 1169
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1170
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1171
    """
Y
yi.wu 已提交
1172
    **Chunk Evaluator**
Y
yi.wu 已提交
1173

Y
yangyaming 已提交
1174
    This function computes and outputs the precision, recall and
1175
    F1-score of chunk detection.
Y
yi.wu 已提交
1176

Y
yi.wu 已提交
1177 1178 1179 1180 1181 1182 1183 1184
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1185

Y
yi.wu 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1211

Y
yi.wu 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1236
    Args:
1237 1238 1239 1240 1241
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1242

Y
yi.wu 已提交
1243
    Returns:
Y
update  
yi.wu 已提交
1244 1245 1246
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1247

Y
yi.wu 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1260
    """
F
fengjiayi 已提交
1261
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1262 1263 1264 1265 1266

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1267 1268 1269
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1270 1271 1272 1273 1274 1275 1276 1277

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1278 1279 1280 1281
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1282 1283 1284
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1285 1286
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1287
        })
1288 1289
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1290 1291


1292
@templatedoc()
Y
Yu Yang 已提交
1293 1294 1295 1296 1297 1298 1299
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1300
                  act=None):
Y
Yu Yang 已提交
1301 1302 1303 1304
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1315

1316 1317
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1336
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1337 1338 1339 1340 1341 1342
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1343
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1344 1345 1346
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1347
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1366
        library is installed. Default: False
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1390
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1391
    """
1392
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1393
    has the same shape as the input.
Q
qiaolongfei 已提交
1394

1395 1396 1397 1398 1399 1400
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1401
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1402 1403 1404 1405 1406 1407 1408

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1409
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1444 1445 1446
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1447 1448
           stride=1,
           padding=0,
1449
           dilation=1,
Y
Yu Yang 已提交
1450 1451 1452
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1453
           use_cudnn=True,
1454 1455
           act=None,
           name=None):
Y
Yu Yang 已提交
1456
    """
C
chengduoZH 已提交
1457
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1458 1459
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1460
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1461 1462 1463 1464 1465 1466 1467
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1468 1469 1470
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1471

1472
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1473

C
chengduoZH 已提交
1474 1475
    .. math::

C
refine  
chengduoZH 已提交
1476
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1477

T
tensor-tang 已提交
1478
    Where:
C
chengduoZH 已提交
1479

1480 1481 1482 1483 1484
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1485
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1486 1487 1488

    Example:

1489 1490
        - Input:

W
weixing02 已提交
1491
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1492

W
weixing02 已提交
1493
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1494

1495
        - Output:
T
tensor-tang 已提交
1496

W
weixing02 已提交
1497
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1498

C
chengduoZH 已提交
1499
        Where
1500 1501

        .. math::
C
chengduoZH 已提交
1502

W
weixing02 已提交
1503 1504
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1505 1506

    Args:
1507
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1508
        num_filters(int): The number of filter. It is as same as the output
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1534 1535

    Returns:
G
guosheng 已提交
1536
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1537 1538
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1539
    Raises:
1540 1541
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1542

C
chengduoZH 已提交
1543 1544 1545
    Examples:
        .. code-block:: python

1546 1547
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1548 1549 1550
    """

    num_channels = input.shape[1]
1551 1552

    l_type = 'conv2d'
X
xzl 已提交
1553 1554
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1555
        l_type = 'depthwise_conv2d'
1556 1557 1558 1559

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1560 1561 1562 1563 1564
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1565
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1566

C
chengduoZH 已提交
1567 1568 1569
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1570
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1571

C
chengduoZH 已提交
1572 1573
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1574 1575

    input_shape = input.shape
M
minqiyang 已提交
1576
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1591
        type=l_type,
Y
Yu Yang 已提交
1592 1593 1594 1595 1596
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1597 1598 1599
        attrs={
            'strides': stride,
            'paddings': padding,
1600
            'dilations': dilation,
C
chengduoZH 已提交
1601
            'groups': groups,
1602
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1603
            'use_mkldnn': False
C
chengduoZH 已提交
1604
        })
Y
Yu Yang 已提交
1605 1606 1607 1608 1609 1610

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1628 1629 1630 1631 1632 1633
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1643 1644
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1645 1646 1647
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1648
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1674
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1675 1676
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1677
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1678 1679
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1680
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1681 1682
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1683
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1709 1710
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1725
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1763
            'use_mkldnn': False
C
chengduoZH 已提交
1764 1765
        })

1766
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1767 1768 1769 1770

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1771
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1772
    """
Y
yangyaming 已提交
1773 1774 1775
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1787
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1788 1789 1790 1791 1792
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1793
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1794 1795 1796 1797 1798 1799 1800

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1801 1802
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1803

L
Luo Tao 已提交
1804 1805
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1806
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1807 1808 1809 1810 1811 1812 1813 1814
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1815

Y
yangyaming 已提交
1816
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1817 1818 1819 1820 1821
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1822 1823
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1824
    """
F
fengjiayi 已提交
1825
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1837 1838 1839 1840 1841
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1842 1843 1844
    return pool_out


C
add doc  
chengduoZH 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1870
def sequence_first_step(input):
L
Luo Tao 已提交
1871
    """
L
Luo Tao 已提交
1872
    This function gets the first step of sequence.
L
Luo Tao 已提交
1873 1874 1875 1876

    .. code-block:: text

       x is a 1-level LoDTensor:
1877
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1878 1879 1880 1881 1882
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1883
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1884
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1885

L
Luo Tao 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1895

Y
yangyaming 已提交
1896
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1897 1898 1899
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1900 1901 1902
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1903
def sequence_last_step(input):
L
Luo Tao 已提交
1904
    """
L
Luo Tao 已提交
1905
    This function gets the last step of sequence.
L
Luo Tao 已提交
1906 1907 1908 1909

    .. code-block:: text

       x is a 1-level LoDTensor:
1910
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1911 1912 1913 1914 1915
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1916
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1917
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1918

L
Luo Tao 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1928

Y
yangyaming 已提交
1929
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1930 1931 1932
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1933 1934 1935
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:

1949 1950 1951 1952 1953
            Given the input Variable **input**:
                
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
1954

1955
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
1956

1957 1958 1959 1960 1961
            the output Variable will be
                
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
Y
Yibing Liu 已提交
1962
	
1963 1964
    NOTE: The first dimension size of **input**, **offset** and **length** 
          should be equal. The **offset** should start from 0.
Y
Yibing Liu 已提交
1965 1966 1967
    
    Args:
        input(Variable): The input Variable which consists of the complete 
Y
Yibing Liu 已提交
1968
                         sequences.
Y
Yibing Liu 已提交
1969 1970 1971 1972 1973 1974
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
1975
        Variable: The output subsequences.
Y
Yibing Liu 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2006
@templatedoc()
Y
Yu Yang 已提交
2007
def pool2d(input,
C
chengduoZH 已提交
2008 2009
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2010 2011
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2012
           global_pooling=False,
C
chengduoZH 已提交
2013
           use_cudnn=True,
2014
           ceil_mode=False,
C
caoying03 已提交
2015
           name=None):
Y
Yu Yang 已提交
2016
    """
F
fengjiayi 已提交
2017
    ${comment}
2018 2019

    Args:
2020 2021 2022
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2023
                          feature, and W is the width of the feature.
2024
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2025
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2026
        pool_type: ${pooling_type_comment}
2027 2028
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2029 2030 2031
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2032
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2033 2034
                        layer will be named automatically.

2035
    Returns:
F
fengjiayi 已提交
2036
        Variable: The pooling result.
F
fengjiayi 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2050 2051 2052 2053
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2054
                            global_pooling=False)
Y
Yu Yang 已提交
2055 2056 2057 2058 2059
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2060

C
chengduoZH 已提交
2061 2062 2063 2064 2065
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2066 2067 2068 2069
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2070 2071
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2072

C
Add doc  
chengduoZH 已提交
2073
    l_type = 'pool2d'
2074 2075

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2076 2077 2078 2079
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2091
            "use_mkldnn": False
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2108
    pooling configurations mentioned in input parameters.
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2121

2122
    Returns:
2123
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2124 2125 2126 2127 2128
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2129

C
chengduoZH 已提交
2130 2131 2132 2133 2134
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2135 2136 2137
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2138

C
chengduoZH 已提交
2139 2140
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2141

2142 2143
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2144 2145 2146 2147
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2148
        type=l_type,
Y
Yu Yang 已提交
2149 2150 2151 2152 2153 2154 2155
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2156
            "paddings": pool_padding,
2157
            "use_cudnn": use_cudnn,
2158
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2159
            "use_mkldnn": False
Y
Yu Yang 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2172
               data_layout='NCHW',
Y
Yang Yang 已提交
2173
               in_place=False,
2174 2175
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2176
               moving_variance_name=None,
2177 2178
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2179
    """
Q
qiaolongfei 已提交
2180 2181 2182 2183
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2184

Q
qiaolongfei 已提交
2185
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2186

Q
qiaolongfei 已提交
2187 2188
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2189 2190 2191
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2204 2205

    Args:
Q
qiaolongfei 已提交
2206
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2207 2208 2209 2210
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2211 2212 2213
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2214
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2215 2216 2217 2218
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2219
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2220
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2221 2222

    Returns:
Q
qiaolongfei 已提交
2223
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2224 2225 2226 2227 2228 2229 2230

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2254
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2255

2256 2257
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2258 2259 2260
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2261
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2262
        shape=param_shape,
2263 2264 2265 2266 2267 2268 2269
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2270
            trainable=False,
W
wanghaoshuang 已提交
2271
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2272
        shape=param_shape,
2273 2274
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2275 2276 2277 2278 2279 2280

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2281 2282
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2283

2284
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2302 2303 2304 2305
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2306
            "use_mkldnn": False,
2307
            "fuse_with_relu": fuse_with_relu
2308
        })
Y
Yu Yang 已提交
2309 2310 2311 2312

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2313
@templatedoc()
G
guosheng 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2324
    ${comment}
G
guosheng 已提交
2325 2326 2327

    The formula is as follows:

Y
yuyang18 已提交
2328
    ..  math::
G
guosheng 已提交
2329 2330 2331 2332 2333 2334 2335

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2336 2337 2338 2339 2340 2341 2342 2343
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2344

G
guosheng 已提交
2345 2346
    Args:
        input(Variable): The input tensor variable.
2347
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2348
            normalization.
2349
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2350
            normalization.
2351
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2352
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2353
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2354 2355 2356 2357 2358 2359
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2360
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2361 2362

    Returns:
Y
yuyang18 已提交
2363
        ${y_comment}
G
guosheng 已提交
2364 2365 2366

    Examples:

Y
yuyang18 已提交
2367 2368 2369
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2385
    if shift:
G
guosheng 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2410 2411 2412 2413
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2414 2415 2416
                     padding=0,
                     stride=1,
                     dilation=1,
2417
                     groups=None,
C
caoying03 已提交
2418
                     param_attr=None,
2419
                     bias_attr=None,
C
chengduoZH 已提交
2420
                     use_cudnn=True,
2421
                     act=None,
C
caoying03 已提交
2422
                     name=None):
Y
Yu Yang 已提交
2423
    """
2424 2425 2426 2427 2428 2429 2430 2431
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2432 2433
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2434 2435 2436
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2437 2438 2439 2440 2441

    For each input :math:`X`, the equation is:

    .. math::

2442
        Out = \sigma (W \\ast X + b)
2443

2444
    Where:
2445 2446 2447

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2448 2449 2450 2451
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2452

2453 2454 2455 2456
    Example:

        - Input:

2457
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2458

2459
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2460 2461 2462

        - Output:

2463
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2464 2465

        Where
Y
Yu Yang 已提交
2466

2467 2468
        .. math::

2469 2470 2471 2472
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2473 2474

    Args:
2475 2476 2477 2478
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2479 2480 2481 2482
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2510 2511

    Returns:
2512
        Variable: The tensor variable storing the convolution transpose result.
2513 2514

    Raises:
2515 2516
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2517 2518 2519 2520

    Examples:
       .. code-block:: python

2521 2522
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2523
    """
2524 2525 2526 2527 2528 2529 2530 2531 2532

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2533 2534 2535
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2536 2537 2538
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2539

C
chengduoZH 已提交
2540 2541
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2542

Y
Yu Yang 已提交
2543 2544 2545 2546 2547
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2548

Y
Yu Yang 已提交
2549 2550
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2551

C
chengduoZH 已提交
2552
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2553
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2554
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2555
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2556
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2557 2558 2559
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2560 2561 2562 2563 2564 2565 2566
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2567
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2568
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2569 2570 2571
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2572
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2573
    helper.append_op(
2574
        type=op_type,
Y
Yu Yang 已提交
2575 2576
        inputs={'Input': [input],
                'Filter': [img_filter]},
2577
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2578
        attrs={
2579
            'output_size': output_size,
2580 2581 2582 2583 2584
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2585 2586
        })

2587 2588 2589
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2590 2591


2592
def conv3d_transpose(input,
Y
Yu Yang 已提交
2593 2594 2595
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2596 2597 2598
                     padding=0,
                     stride=1,
                     dilation=1,
2599
                     groups=None,
C
caoying03 已提交
2600
                     param_attr=None,
2601
                     bias_attr=None,
C
chengduoZH 已提交
2602
                     use_cudnn=True,
2603
                     act=None,
C
caoying03 已提交
2604
                     name=None):
Y
Yu Yang 已提交
2605
    """
2606
    **Convlution3D transpose layer**
2607

2608
    The convolution3D transpose layer calculates the output based on the input,
2609
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2610 2611 2612 2613 2614 2615
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2616 2617 2618
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2619 2620 2621 2622 2623

    For each input :math:`X`, the equation is:

    .. math::

2624
        Out = \sigma (W \\ast X + b)
2625 2626 2627

    In the above equation:

2628 2629
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2630 2631 2632 2633
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2634

2635 2636 2637 2638
    Example:

        - Input:

2639
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2640

2641
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2642 2643 2644

        - Output:

2645
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2646 2647

        Where
Y
Yu Yang 已提交
2648

2649 2650
        .. math::

2651 2652 2653
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2654 2655

    Args:
2656
        input(Variable): The input image with [N, C, D, H, W] format.
2657 2658 2659
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2660
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2661 2662
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2663
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2664 2665 2666
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2667 2668
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2669
        stride(int|tuple): The stride size. If stride is a tuple, it must
2670 2671
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2672
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2673 2674 2675
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2676 2677 2678 2679 2680
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2681 2682 2683
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2684 2685 2686 2687 2688
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2689 2690

    Returns:
2691
        Variable: The tensor variable storing the convolution transpose result.
2692 2693

    Raises:
2694 2695
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2696 2697 2698 2699

    Examples:
       .. code-block:: python

2700 2701
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2702
    """
2703 2704
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2705
    if not isinstance(input, Variable):
2706
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2707 2708
    input_channel = input.shape[1]

2709 2710 2711
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2712

C
chengduoZH 已提交
2713 2714 2715
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2716 2717 2718 2719 2720 2721
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2722 2723 2724
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2725

2726
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2727
                         padding[0] - 1) // dilation[0] + 1
2728
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2729
                         padding[1] - 1) // dilation[1] + 1
2730
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2731
                         padding[2] - 1) // dilation[2] + 1
2732
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2733
    else:
2734 2735
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2736

2737
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2738
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2739 2740 2741
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2742
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2743
    helper.append_op(
2744
        type=l_type,
Y
Yu Yang 已提交
2745 2746
        inputs={'Input': [input],
                'Filter': [img_filter]},
2747
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2748 2749 2750 2751
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2752
            'groups': groups,
C
chengduoZH 已提交
2753 2754
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2755

2756 2757
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2758
    return out
Y
yangyaming 已提交
2759 2760


Y
yangyaming 已提交
2761
def sequence_expand(x, y, ref_level=-1, name=None):
2762
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2763 2764 2765 2766
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2767 2768 2769 2770 2771

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2772
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2773
                x.data = [[a], [b], [c], [d]]
2774 2775 2776
                x.dims = [4, 1]

            y is a LoDTensor:
2777 2778
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2779

Y
yangyaming 已提交
2780
            ref_level: 0
2781

Y
yangyaming 已提交
2782
            then output is a 1-level LoDTensor:
2783
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2784
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2785 2786 2787 2788
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2789
                x.data = [[a], [b], [c]]
2790 2791 2792
                x.dims = [3, 1]

            y is a LoDTensor:
2793
                y.lod = [[2, 0, 3]]
2794

Y
yangyaming 已提交
2795
            ref_level: -1
2796

Y
yangyaming 已提交
2797 2798 2799
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2800 2801 2802
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2803 2804
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2805
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2806
                        will be named automatically.
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2817
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2818
    """
Y
yangyaming 已提交
2819
    helper = LayerHelper('sequence_expand', input=x, **locals())
2820 2821 2822
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2823 2824 2825 2826 2827
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2828
    return tmp
2829 2830


C
chengduo 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2896
@templatedoc()
2897
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2898 2899 2900 2901 2902
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2903 2904 2905
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2906
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2907 2908 2909 2910
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
2911 2912 2913
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
2914

F
fengjiayi 已提交
2915
    Returns:
M
minqiyang 已提交
2916
        Variable: The padded sequence batch and the original lengths before
2917
                  padding. All sequences has the same length.
M
minqiyang 已提交
2918

F
fengjiayi 已提交
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2933 2934 2935 2936 2937
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2938 2939 2940 2941 2942 2943
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2944 2945
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2946
        attrs={'padded_length': maxlen})
2947
    return out, length
F
fengjiayi 已提交
2948 2949


2950
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
2951
    """
2952
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
2968
	specified by input Variable **length**:
Y
Yibing Liu 已提交
2969 2970 2971 2972 2973 2974

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
2975
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
2976 2977 2978 2979 2980 2981

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
2982 2983
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3010 3011 3012 3013 3014 3015 3016 3017 3018
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3019 3020
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3021 3022 3023

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3024 3025

    This layer does the search in beams for one time step. Specifically, it
3026 3027 3028 3029 3030 3031
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3032

3033 3034 3035 3036 3037 3038 3039 3040
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3041

3042
    Args:
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3068

3069
    Returns:
3070 3071
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3072 3073 3074 3075

    Examples:
        .. code-block:: python

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3104
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3122 3123 3124 3125 3126 3127 3128
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3129

3130 3131 3132 3133 3134 3135 3136 3137 3138
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3139

3140 3141 3142 3143 3144 3145
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3146

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3172 3173 3174 3175
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3176
              param_attr=None,
C
caoying03 已提交
3177 3178
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3179 3180 3181 3182
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3183
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3184

3185
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3186

3187
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3188

3189
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3190 3191 3192

            h_t & = o_t tanh(c_t)

3193 3194 3195 3196 3197 3198
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3199 3200 3201

        .. math::

3202
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3203 3204 3205 3206 3207 3208 3209 3210

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3211
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3212 3213

    Args:
Y
yangyaming 已提交
3214 3215 3216 3217 3218 3219
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3220
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3221 3222
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3223 3224
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3225 3226
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3227 3228

    Returns:
Y
yangyaming 已提交
3229
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3230 3231

    Raises:
3232 3233 3234 3235
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3236 3237 3238 3239 3240 3241

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3242
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3243
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3244
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3261
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3262 3263 3264 3265
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3266 3267
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3268 3269 3270
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3271
    size = cell_t_prev.shape[1]
3272
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3273 3274
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3275
                param_attr=param_attr,
3276
                bias_attr=bias_attr)
Y
yangyaming 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3289
    return h, c
G
guosheng 已提交
3290 3291


C
caoying03 已提交
3292
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3293
    """
Y
yangyaming 已提交
3294
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3295 3296 3297

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3298
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3299 3300
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3301 3302
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3303
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3304
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3305
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3306 3307
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3308 3309 3310

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3311

G
guosheng 已提交
3312 3313 3314 3315 3316 3317
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3318
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3319 3320 3321 3322
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3323 3324 3325 3326

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3327
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3328 3329 3330
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3331 3332 3333
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3334 3335
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3336 3337 3338 3339 3340
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3341
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3342 3343 3344 3345
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3346 3347


C
caoying03 已提交
3348
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3349
    """
Y
Yibing Liu 已提交
3350
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3351 3352 3353

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3354 3355 3356
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3357
            must be in the range :math:`[-rank(input), rank(input))`. If
3358
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3359
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3360 3361
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3362
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3363
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3364
                       will be named automatically.
G
guosheng 已提交
3365 3366

    Returns:
Y
Yibing Liu 已提交
3367
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3368

G
guosheng 已提交
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3379 3380
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3381 3382 3383 3384 3385 3386 3387

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3388 3389 3390
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3391 3392
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3393 3394 3395 3396 3397
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3398
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3399 3400 3401 3402
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3403 3404


C
caoying03 已提交
3405
def reduce_max(input, dim=None, keep_dim=False, name=None):
3406
    """
Y
yangyaming 已提交
3407
    Computes the maximum of tensor elements over the given dimension.
3408 3409 3410

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3411
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3412 3413 3414
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3415
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3416 3417
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3418
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3419 3420
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3421 3422 3423

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3436 3437 3438 3439 3440 3441 3442

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3443 3444 3445
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3446 3447
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3448 3449 3450 3451 3452
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3453
            'dim': dim if dim != None else [0],
3454 3455 3456 3457 3458 3459
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3460
def reduce_min(input, dim=None, keep_dim=False, name=None):
3461
    """
Y
yangyaming 已提交
3462
    Computes the minimum of tensor elements over the given dimension.
3463 3464 3465

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3466
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3467 3468 3469
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3470
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3471 3472
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3473
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3474 3475
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3476 3477 3478

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3479

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3491 3492 3493 3494 3495 3496 3497

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3498 3499 3500
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3501 3502
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3503 3504 3505 3506 3507
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3508
            'dim': dim if dim != None else [0],
3509 3510 3511 3512
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3513 3514


3515 3516 3517 3518 3519 3520
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3521
        dim (list|int|None): The dimensions along which the product is performed. If
3522 3523
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3524 3525
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3526 3527 3528
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3529
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3530
            layer will be named automatically.
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3545
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3546
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3547 3548 3549 3550 3551 3552 3553

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3554 3555 3556
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3557 3558
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3559 3560 3561 3562 3563
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3564
            'dim': dim if dim != None else [0],
3565 3566 3567 3568 3569 3570
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3571
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3572
    """
C
caoying03 已提交
3573
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3574 3575 3576

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3577 3578 3579 3580 3581
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3582
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3583
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3584
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3585 3586
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3587 3588

    Returns:
D
dzhwinter 已提交
3589
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3599 3600
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3630 3631 3632 3633 3634 3635 3636 3637 3638


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3639
    .. math::
3640 3641

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3642 3643 3644 3645 3646

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3647
        x(Variable|list): The input tensor to l2_normalize layer.
3648
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3649 3650
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3651
        epsilon(float): The epsilon value is used to avoid division by zero, \
3652
            the defalut value is 1e-10.
3653
        name(str|None): A name for this layer(optional). If set None, the layer \
3654
            will be named automatically.
C
caoying03 已提交
3655 3656

    Returns:
3657
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3658 3659

    Examples:
3660

C
caoying03 已提交
3661 3662
        .. code-block:: python

3663 3664 3665 3666
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3667 3668
    """

F
fengjiayi 已提交
3669 3670
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3671 3672
    helper = LayerHelper("l2_normalize", **locals())

3673 3674
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3675
    helper.append_op(
3676 3677 3678 3679
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3680
        attrs={
3681 3682
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3683 3684
        })
    return out
3685 3686


S
sneaxiy 已提交
3687
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3688
    """
Y
ying 已提交
3689 3690 3691 3692
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3693

C
chengduoZH 已提交
3694
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3695
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3696

3697 3698 3699 3700 3701
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3702
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3703

C
chengduoZH 已提交
3704
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3705
      performs in the following way.
G
guosheng 已提交
3706

3707
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3708
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3709
        last two dimensions and a batched matrix multiply supporting broadcast
3710
        applies on the two tensors.
G
guosheng 已提交
3711

Y
ying 已提交
3712 3713
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3714
    removed after matrix multiplication.
G
guosheng 已提交
3715 3716 3717

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3718 3719 3720
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3721
        alpha (float): The scale of output. Default 1.0.
3722
        name(str|None): A name for this layer(optional). If set None, the layer
3723
            will be named automatically.
G
guosheng 已提交
3724 3725

    Returns:
3726
        Variable: The product Tensor variable.
G
guosheng 已提交
3727

G
guosheng 已提交
3728 3729 3730
    Examples:
        .. code-block:: python

3731
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3732 3733
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3734

3735 3736
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3737

3738 3739
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3740

3741 3742
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3743 3744 3745 3746

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3747 3748
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3749

Y
ying 已提交
3750
            # x: [M], y: [N]
3751
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3752
    """
Y
ying 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3765
            y_shape = y_shape + [1]
Y
ying 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3782
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3783
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3784
    helper.append_op(
3785 3786 3787 3788
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3789 3790 3791
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3792
            'alpha': float(alpha),
S
sneaxiy 已提交
3793
        })
3794
    return out
3795 3796


3797
def topk(input, k, name=None):
Q
qingqing01 已提交
3798 3799 3800 3801
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3802
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3803 3804 3805 3806 3807 3808
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3830 3831 3832
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3833
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3834
                 of input.
3835
        name(str|None): A name for this layer(optional). If set None, the layer
3836
                       will be named automatically.
F
fengjiayi 已提交
3837
                       Default: None
Q
qingqing01 已提交
3838 3839

    Returns:
3840 3841 3842
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3843
        within the last dimension of input.
Q
qingqing01 已提交
3844

F
fengjiayi 已提交
3845 3846
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3867
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3868
    """
Y
ying 已提交
3869 3870 3871 3872 3873 3874 3875 3876 3877
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3878

Y
ying 已提交
3879
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3880

3881
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3882 3883
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3884
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3885

3886
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3887 3888
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3889

3890 3891 3892
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3893
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3894
                          the length of reference string.
3895
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3896
                                     calculating edit distance.
3897
        name (str): The name of this layer. It is optional.
3898

W
wanghaoshuang 已提交
3899
    Returns:
W
wanghaoshuang 已提交
3900
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3901 3902 3903 3904 3905

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3906
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3907
            cost = fluid.layers.edit_distance(input=x,label=y)
3908
    """
3909
    helper = LayerHelper("edit_distance", **locals())
3910

3911
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3912
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3913 3914 3915 3916 3917 3918 3919
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3920
            attrs={"tokens": ignored_tokens})
3921 3922 3923 3924 3925
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3926
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3927
            attrs={"tokens": ignored_tokens})
3928 3929
        label = erased_label

3930 3931
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3932
    sequence_num = helper.create_tmp_variable(dtype="int64")
3933 3934 3935 3936
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3937 3938
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3939 3940
        attrs={"normalized": normalized})

3941
    return edit_distance_out, sequence_num
3942 3943 3944 3945 3946


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3947

Y
ying 已提交
3948 3949 3950 3951
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3969
        input.lod = [[4, 4]]
3970 3971 3972 3973 3974 3975 3976

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3977
        output.lod = [[2, 1]]
3978 3979 3980

    Args:

Y
ying 已提交
3981 3982 3983 3984 3985 3986 3987 3988 3989
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3990
        name (str): The name of this layer. It is optional.
3991 3992

    Returns:
3993
        Variable: CTC greedy decode result. If all the sequences in result were
3994
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3995 3996 3997 3998 3999

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4000

4001
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4002
    """
4003
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4004
    _, topk_indices = topk(input, k=1)
4005 4006 4007 4008 4009 4010

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4011
        outputs={"Output": [ctc_out]},
4012 4013
        attrs={"merge_repeated": True,
               "blank": blank})
4014
    return ctc_out
4015 4016


F
fengjiayi 已提交
4017
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4018
    """
4019 4020
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4021
    to compute Connectionist Temporal Classification (CTC) loss.
4022 4023
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4024 4025 4026
    input tensor.

    Args:
4027
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4028 4029 4030 4031
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4032
       label (Variable): The ground truth of variable-length sequence,
4033 4034 4035
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4036 4037
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4038 4039 4040
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4041
         follewed by a mean_op.
W
wanghaoshuang 已提交
4042 4043

    Returns:
4044 4045
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4046 4047

    Examples:
4048

W
wanghaoshuang 已提交
4049
        .. code-block:: python
4050

4051 4052 4053
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4054 4055

    """
F
fengjiayi 已提交
4056
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4083 4084 4085
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4086 4087 4088 4089 4090
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4091

4092
            out.lod  = [[0, 1, 3]]
4093 4094 4095 4096

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4097 4098 4099 4100 4101 4102 4103
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4104 4105 4106

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4107 4108

    Returns:
4109

4110 4111 4112 4113 4114
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4115
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4116
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4117 4118 4119 4120 4121 4122 4123 4124 4125
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4126 4127


4128 4129 4130 4131
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4132 4133 4134 4135 4136 4137 4138
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
4139 4140 4141 4142 4143 4144 4145
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4146 4147
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4148
            sample is 1.0.
4149 4150 4151
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
4152

4153
    Returns:
Y
Yibing Liu 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4181
    """
Y
Yang Yu 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4201 4202 4203 4204 4205 4206 4207 4208 4209
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4226
    return cost / (num_neg_samples + 1)
4227 4228


G
guosheng 已提交
4229
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4230 4231
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4232
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4242

W
weixing02 已提交
4243
    Args:
M
minqiyang 已提交
4244
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4245 4246 4247 4248 4249
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4250 4251
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4252
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4253 4254
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4255 4256 4257 4258 4259 4260 4261 4262

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4263 4264 4265
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4266 4267 4268 4269 4270 4271 4272 4273
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4274
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4275 4276 4277 4278 4279
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4280 4281 4282 4283 4284 4285 4286 4287
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4288 4289
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4290
        inputs=inputs,
W
weixing02 已提交
4291 4292 4293 4294 4295 4296
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4297
def transpose(x, perm, name=None):
Y
ying 已提交
4298 4299 4300 4301 4302 4303 4304
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4305 4306 4307
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4308 4309 4310 4311 4312 4313 4314 4315

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4316
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4317 4318
    """

Y
fix ci.  
ying 已提交
4319
    if len(perm) != len(x.shape):
Y
ying 已提交
4320 4321 4322
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4323 4324 4325 4326 4327 4328
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4329 4330

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4331
    out = helper.create_tmp_variable(x.dtype)
4332
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4333
    helper.append_op(
4334
        type='transpose2',
Y
fix ci.  
ying 已提交
4335
        inputs={'X': [x]},
4336 4337
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4338 4339
        attrs={'axis': perm})
    return out
4340 4341


4342 4343 4344 4345 4346 4347 4348
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4349
    """
4350 4351 4352 4353 4354 4355 4356
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4385 4386 4387 4388 4389 4390 4391 4392 4393
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4394 4395 4396
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4397 4398 4399 4400 4401
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4429 4430 4431
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4444
            output.dims = {8, 8}
4445

4446
            output.lod = [[4, 4]]
4447

D
dzhwinter 已提交
4448
     Examples:
4449 4450 4451

        .. code-block:: python

4452 4453
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4454 4455

    """
W
wanghaoshuang 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4466 4467 4468 4469 4470 4471 4472
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4473
    helper = LayerHelper('im2sequence', **locals())
4474 4475
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4476
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4477
    return out
4478 4479


Y
yuyang18 已提交
4480
@templatedoc()
4481
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4482 4483
    """
    ${comment}
4484 4485

    Args:
Y
yuyang18 已提交
4486
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4487 4488
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4489 4490 4491 4492 4493
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4494
        ${out_comment}.
4495 4496

    Examples:
Y
yuyang18 已提交
4497 4498 4499 4500
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4513
    return helper.append_activation(out)
4514 4515


Y
yuyang18 已提交
4516
@templatedoc()
4517 4518
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4519 4520 4521 4522 4523 4524 4525
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4526 4527

    Args:
Y
yuyang18 已提交
4528 4529
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4530 4531

    Returns:
Y
yuyang18 已提交
4532
        ${out_comment}.
4533 4534
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4535 4536 4537 4538 4539 4540

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4541 4542 4543 4544 4545 4546
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4547 4548


4549 4550 4551 4552
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4553 4554
    """
    **Softmax With Cross Entropy Operator.**
4555

4556 4557 4558 4559
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4560

4561 4562 4563
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4564

4565 4566 4567
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4568

4569
    The equation is as follows:
4570

4571
    1) Hard label (one-hot label, so every sample has exactly one class)
4572

4573 4574 4575 4576
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4577

4578 4579 4580
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4581

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4594 4595
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4596 4597
                            if soft_label is set to False. Default: -100

4598 4599 4600 4601 4602 4603 4604 4605 4606
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4607 4608
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4619 4620
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4621 4622 4623 4624 4625
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4626 4627
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4628
    For each instance, it computes the smooth L1 loss element by element first
4629
    and then sums all the losses. So the shape of ouput Variable is
4630
    [batch_size, 1].
4631

4632 4633
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4634
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4635
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4636
            L1 loss op with same shape as :attr:`x`.
4637
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4638 4639
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4640
            by this tensor element by element.
4641
        outside_weight (Variable|None): A tensor with rank at least 2. This
4642 4643
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4644
            element by element.
4645
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4646 4647
           scalar with default value 1.0.

4648
    Returns:
4649
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4650 4651 4652 4653 4654

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4655 4656
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4657
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4658
            out = fluid.layers.smooth_l1(x=fc, y=label)
4659
    """
4660

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4676 4677 4678 4679


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4680
    This layer creates the one-hot representations for input indices.
4681 4682

    Args:
Y
Yibing Liu 已提交
4683 4684
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4685 4686

    Returns:
Y
Yibing Liu 已提交
4687
        Variable: The one-hot representations of input.
4688 4689

    Examples:
C
caoying03 已提交
4690
        .. code-block:: python
4691

Y
Yibing Liu 已提交
4692 4693
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4694 4695 4696 4697 4698 4699 4700 4701 4702
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4703 4704


Y
Yu Yang 已提交
4705
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4706
    """
Y
yi.wu 已提交
4707 4708 4709
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4710 4711 4712 4713 4714 4715

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4716 4717
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4718 4719 4720 4721 4722 4723

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4724 4725
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4726 4727
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4728 4729 4730 4731 4732
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4733
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4734
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4735 4736
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4737 4738
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4739 4740 4741
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4742 4743


4744
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4745
    """
C
caoying03 已提交
4746 4747
    Gives a new shape to the input Tensor without changing its data.

4748 4749 4750 4751 4752
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4753

4754
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4755

4756 4757 4758 4759
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4760
    2. 0 means the actual dimension value is going to be copied from the
4761 4762 4763 4764
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4765 4766

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4767
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4768
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4769

4770
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4771 4772
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4773 4774
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4775
    dimensions.
C
caoying03 已提交
4776

4777
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4778 4779 4780 4781
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4782 4783

    Args:
4784
        x(variable): The input tensor.
C
caoying03 已提交
4785 4786
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4787 4788 4789 4790 4791
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4792
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4793 4794 4795 4796
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4797
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4798

4799 4800
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4801

X
Xin Pan 已提交
4802 4803 4804
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4805 4806
    Examples:
        .. code-block:: python
G
guosheng 已提交
4807

4808
            data = fluid.layers.data(
4809
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4810
            reshaped = fluid.layers.reshape(
4811
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4812 4813 4814
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4815
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4816 4817 4818 4819 4820
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4821

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4837
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4838
    out = helper.create_tmp_variable(dtype=x.dtype)
4839
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4840
    helper.append_op(
4841
        type="reshape2",
X
Xin Pan 已提交
4842
        inputs=inputs,
D
dzhwinter 已提交
4843
        attrs={"shape": shape},
4844 4845
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4846

D
dzhwinter 已提交
4847
    return helper.append_activation(out)
4848

4849

4850
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4851
    """
M
minqiyang 已提交
4852 4853 4854
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4855
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4856

Y
Yibing Liu 已提交
4857 4858
    Examples:
    Case 1:
M
minqiyang 已提交
4859
      Given
Y
Yibing Liu 已提交
4860 4861 4862 4863 4864 4865 4866 4867
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4868
        and
Y
Yibing Liu 已提交
4869 4870 4871
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4872

Y
Yibing Liu 已提交
4873
    Args:
4874
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4875
        axes (list): List of integers, indicating the dimensions to be squeezed.
4876
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4877 4878 4879 4880 4881 4882 4883 4884

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4885
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4886 4887
    """
    helper = LayerHelper("squeeze", **locals())
4888
    out = helper.create_tmp_variable(dtype=input.dtype)
4889
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4890
    helper.append_op(
4891
        type="squeeze2",
4892
        inputs={"X": input},
Y
Yibing Liu 已提交
4893
        attrs={"axes": axes},
4894 4895
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4896

4897 4898 4899
    return out


4900
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4901
    """
M
minqiyang 已提交
4902 4903 4904
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4905

M
minqiyang 已提交
4906 4907
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4908
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4909

Y
Yibing Liu 已提交
4910
    Args:
4911
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4912
        axes (list): List of integers, indicating the dimensions to be inserted.
4913
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4914 4915 4916 4917 4918 4919 4920 4921

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4922
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4923 4924
    """
    helper = LayerHelper("unsqueeze", **locals())
4925
    out = helper.create_tmp_variable(dtype=input.dtype)
4926
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4927
    helper.append_op(
4928
        type="unsqueeze2",
4929
        inputs={"X": input},
Y
Yibing Liu 已提交
4930
        attrs={"axes": axes},
4931 4932
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4933

4934 4935
    return out

4936

Y
yangyaming 已提交
4937
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4938
    """
Y
Yibing Liu 已提交
4939
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4940 4941 4942 4943
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4944
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4945 4946 4947 4948 4949 4950

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4951
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4952 4953 4954
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4955
            target_lod: [4, 2]
Y
yangyaming 已提交
4956 4957

            then we get a 1-level LoDTensor:
4958
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4959 4960 4961 4962 4963 4964
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4965
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4966 4967 4968 4969
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4970
                y.data = [[2, 4]]
Y
yangyaming 已提交
4971 4972 4973
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4974
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4975 4976 4977 4978 4979 4980
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4981
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4982 4983 4984 4985
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4986
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4987 4988 4989 4990
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4991
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4992 4993 4994 4995 4996
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4997
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4998
                           from :attr:`y`.
Y
yangyaming 已提交
4999
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5000
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5001 5002

    Returns:
Y
Yibing Liu 已提交
5003
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5004 5005

    Raises:
Y
Yibing Liu 已提交
5006
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5042
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5071 5072
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5100 5101 5102 5103


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5104
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5105
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5106

G
guosheng 已提交
5107 5108 5109 5110
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5133
                         The length of :attr:paddings must be
G
guosheng 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5144

G
guosheng 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5159 5160


C
chengduo 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5241 5242 5243 5244 5245 5246 5247
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5248 5249
    called label-smoothing regularization (LSR).

5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5273
                              be :math:`(1, class\_num)`.
5274 5275
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5276
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5304 5305


Y
yi.wu 已提交
5306
@templatedoc()
5307 5308
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5309
    ${comment}
5310 5311

    Args:
Y
yi.wu 已提交
5312 5313
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5314 5315 5316
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5317 5318

    Returns:
Y
update  
yi.wu 已提交
5319
        Variable: ${out_comment}.
5320 5321

    Examples:
5322 5323
        .. code-block:: python

5324
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5370 5371
        .. code-block:: python

W
whs 已提交
5372 5373 5374 5375
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5376
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5377 5378 5379 5380 5381 5382
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5383 5384


5385 5386 5387 5388 5389
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5390
    """
Q
qiaolongfei 已提交
5391
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5392

5393
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5394 5395 5396
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5397

5398
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5399

5400
    Args:
5401
        input (Variable): The input tensor of image resize layer,
5402 5403
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5404
        out_shape(list|tuple|Variable|None): Output shape of image resize
5405 5406
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5407
        scale(float|None): The multiplier for the input height or width.
5408 5409 5410
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5411 5412
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5413 5414
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5415 5416

    Returns:
Q
update  
qiaolongfei 已提交
5417 5418
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5419

5420 5421 5422
    Examples:
        .. code-block:: python

5423
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5424
    """
5425 5426 5427 5428
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5429 5430
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5431 5432
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5433 5434 5435 5436

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5437 5438 5439
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5440
    if out_shape is not None:
B
baiyf 已提交
5441 5442 5443
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5444 5445 5446 5447 5448 5449
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5450 5451 5452 5453
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5454 5455
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5456
        type=resample_methods[resample],
5457
        inputs=inputs,
5458 5459 5460 5461
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5462 5463


Y
yuyang18 已提交
5464
@templatedoc(op_type="bilinear_interp")
5465 5466
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5467 5468 5469 5470 5471 5472
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5473

Y
yuyang18 已提交
5474 5475 5476 5477 5478 5479 5480 5481
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5482 5483 5484 5485 5486 5487 5488
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5489 5490 5491
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5492 5493 5494 5495 5496 5497 5498
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5499
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5500

5501
    Returns:
Q
update  
qiaolongfei 已提交
5502
        Variable: The output is a 4-D tensor of the shape
5503
        (num_batches, channls, out_h, out_w).
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5514 5515 5516
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5517 5518 5519
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5520 5521
def gather(input, index):
    """
Q
qiaolongfei 已提交
5522 5523
    **Gather Layer**

5524
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5525 5526 5527 5528
    of X indexed by `index` and concatenate them together.

    .. math::

5529
        Out = X[Index]
W
whs 已提交
5530 5531 5532 5533 5534 5535 5536


    .. code-block:: text


                Given:

5537 5538
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5549
        input (Variable): The source input with rank>=1.
W
whs 已提交
5550 5551 5552 5553 5554 5555
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5556

W
whs 已提交
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5686

5687 5688 5689
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5690
    """
F
stash  
fengjiayi 已提交
5691
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5692
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5693
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5694
    if seed is None:
5695
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5696
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5697
    if isinstance(seed, int):
F
fengjiayi 已提交
5698 5699 5700 5701 5702
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5703 5704 5705 5706
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5707
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5708 5709
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5710 5711
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5712
    return out
W
whs 已提交
5713 5714


5715
def log(x, name=None):
W
wanghaoshuang 已提交
5716 5717 5718 5719 5720
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5721
        Out = \\ln(x)
W
wanghaoshuang 已提交
5722 5723

    Args:
5724
        x (Variable): Input tensor.
5725 5726
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5727 5728 5729 5730 5731 5732 5733 5734

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5735
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5736 5737
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5738
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5739
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5740
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5741 5742 5743
    return out


5744
def relu(x, name=None):
W
wanghaoshuang 已提交
5745 5746
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5747
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5748 5749 5750 5751
    the tensor elementwise.

    .. math::

5752
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5753 5754

    Args:
5755
        x (Variable): The input tensor.
5756 5757
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5758 5759 5760 5761 5762 5763 5764 5765

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5766
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5767 5768
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5769
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5770
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5771
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5772
    return out
5773 5774


W
whs 已提交
5775 5776 5777
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5778 5779 5780 5781
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5782
    .. math::
5783 5784

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5785

5786
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5787 5788 5789 5790 5791
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5792
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5793
                           Its shape should be the same as input.
5794
        num_classes (int): The possible number of labels.
W
whs 已提交
5795 5796 5797 5798

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5799
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5800 5801 5802 5803

    Examples:

        .. code-block:: python
5804

W
whs 已提交
5805 5806 5807 5808 5809 5810 5811 5812 5813
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5814 5815
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5816
        outputs={
W
whs 已提交
5817 5818 5819
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5820 5821 5822
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5897
                    isinstance(shape, Variable)):
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5931

5932 5933
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5934

5935 5936 5937 5938
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5939

5940 5941 5942 5943 5944
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5945 5946 5947

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5992 5993


M
minqiyang 已提交
5994 5995
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
5996
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
5997
    which compares left score and right score passed in.
M
minqiyang 已提交
5998
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
5999 6000 6001 6002 6003 6004

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6005
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6006 6007
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6008
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6009 6010 6011
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6012
       Variable: The ranking loss.
M
minqiyang 已提交
6013
    Raises:
M
minqiyang 已提交
6014
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6015 6016 6017 6018 6019 6020 6021
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6022
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6023 6024 6025 6026 6027 6028
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
M
minqiyang 已提交
6029 6030
    out = helper.create_tmp_variable(left.dtype)
    act = helper.create_tmp_variable(left.dtype)
M
minqiyang 已提交
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6056

W
whs 已提交
6057 6058
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6059

W
whs 已提交
6060
      Case 0:
M
minqiyang 已提交
6061

W
whs 已提交
6062 6063 6064
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6065

W
whs 已提交
6066 6067 6068
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6069

W
whs 已提交
6070
      Case 1:
M
minqiyang 已提交
6071

W
whs 已提交
6072 6073
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6074

W
whs 已提交
6075 6076 6077
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6078

W
whs 已提交
6079
      Case 2:
M
minqiyang 已提交
6080

W
whs 已提交
6081 6082
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6083

W
whs 已提交
6084 6085 6086
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6087 6088


W
whs 已提交
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6286
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6287
                        will be named automatically.
J
jerrywgz 已提交
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6406

6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6417 6418
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6434
        ValueError: If axis is not in range [0, rank(x)].
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6452
    x_shape = helper.create_tmp_variable(x.dtype)
6453
    helper.append_op(
6454
        type='flatten2',
6455
        inputs={"X": x},
6456 6457
        outputs={'Out': out,
                 'XShape': x_shape},
6458 6459
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6460 6461


C
chenweihang 已提交
6462
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6463
    """
C
chenweihang 已提交
6464
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6465
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6466 6467
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6468

C
chenweihang 已提交
6469 6470 6471 6472
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6473
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6474 6475 6476 6477 6478 6479
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6480
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6481 6482 6483
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6484 6485 6486
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6498
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6499 6500 6501 6502 6503 6504
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6505
    return out
6506

6507

S
sneaxiy 已提交
6508 6509 6510 6511 6512 6513 6514 6515 6516
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6517

S
sneaxiy 已提交
6518
    .. math::
6519

S
sneaxiy 已提交
6520 6521 6522
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6523
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6524 6525 6526 6527
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6528 6529 6530
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6531 6532
    Returns:
        Variable: The output sequence mask.
6533

S
sneaxiy 已提交
6534 6535
    """

Q
qingqing01 已提交
6536
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6537 6538 6539 6540 6541
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6542 6543 6544
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6545 6546
        outputs={'Y': out},
        attrs={
6547
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6548 6549 6550
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6551 6552


X
Xin Pan 已提交
6553
def stack(x, axis=0):
S
sneaxiy 已提交
6554 6555 6556 6557
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6558 6559 6560 6561 6562 6563 6564

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6565
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6566
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6567 6568

    Args:
6569
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6570
        axis (int|None): The axis along which all inputs are stacked.
6571

S
sneaxiy 已提交
6572 6573
    Returns:
        Variable: The stacked variable.
6574

S
sneaxiy 已提交
6575 6576
    """

X
Xin Pan 已提交
6577 6578 6579 6580 6581 6582 6583 6584
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6585 6586
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6587

X
Xin Pan 已提交
6588
    return out
D
dzhwinter 已提交
6589 6590 6591 6592 6593 6594 6595


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6596

D
dzhwinter 已提交
6597 6598 6599
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6600
    raised.
D
dzhwinter 已提交
6601 6602

    Args:
M
minqiyang 已提交
6603
        x (Variable): Input variable.
D
dzhwinter 已提交
6604 6605
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6606

D
dzhwinter 已提交
6607 6608
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6609

D
dzhwinter 已提交
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6642

W
whs 已提交
6643 6644 6645 6646
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6647

W
whs 已提交
6648
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6649

W
whs 已提交
6650
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6651

W
whs 已提交
6652 6653 6654 6655
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6656

W
whs 已提交
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6680 6681


G
fix  
gongweibao 已提交
6682 6683 6684
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6685
@templatedoc()
G
fix  
gongweibao 已提交
6686 6687 6688 6689 6690 6691 6692 6693 6694
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6695
    ${comment}
G
fix  
gongweibao 已提交
6696 6697

    Args:
G
gongweibao 已提交
6698 6699 6700
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6701
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6702 6703 6704
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6705 6706
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6707
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6729 6730


G
gongweibao 已提交
6731
@templatedoc()
X
Xin Pan 已提交
6732
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6733
    """
G
gongweibao 已提交
6734
    ${comment}
G
fix  
gongweibao 已提交
6735 6736

    Args:
G
gongweibao 已提交
6737 6738 6739 6740
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6741 6742 6743
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6744
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6760
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6761 6762 6763 6764 6765
        })

    return out


G
gongweibao 已提交
6766
@templatedoc()
G
fix  
gongweibao 已提交
6767
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6768
    """
G
gongweibao 已提交
6769
    ${comment}
G
fix  
gongweibao 已提交
6770 6771

    Args:
G
gongweibao 已提交
6772 6773 6774 6775
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6776
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6777 6778

    Returns:
G
gongweibao 已提交
6779
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6780 6781 6782 6783

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6784
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6796
@templatedoc()
G
fix  
gongweibao 已提交
6797 6798 6799 6800 6801 6802 6803 6804 6805
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6806
    ${comment}
G
fix  
gongweibao 已提交
6807 6808

    Args:
G
gongweibao 已提交
6809 6810
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6811
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6812 6813 6814 6815
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6816
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6817 6818

    Returns:
G
gongweibao 已提交
6819
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6842
@templatedoc()
X
Xin Pan 已提交
6843
def sum(x):
G
fix  
gongweibao 已提交
6844
    """
G
gongweibao 已提交
6845
    ${comment}
G
fix  
gongweibao 已提交
6846 6847

    Args:
G
gongweibao 已提交
6848
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6849 6850

    Returns:
G
gongweibao 已提交
6851
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6852 6853 6854
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6855
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6856 6857 6858 6859
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
6860
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6861 6862 6863 6864

    return out


G
gongweibao 已提交
6865
@templatedoc()
G
fix  
gongweibao 已提交
6866 6867
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6868
    ${comment}
G
fix  
gongweibao 已提交
6869 6870

    Args:
G
gongweibao 已提交
6871 6872 6873 6874
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6875 6876

    Returns:
G
gongweibao 已提交
6877
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6878 6879 6880 6881

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6882
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6894
@templatedoc()
G
fix  
gongweibao 已提交
6895 6896
def shape(input):
    """
G
gongweibao 已提交
6897
    ${comment}
G
fix  
gongweibao 已提交
6898 6899

    Args:
G
gongweibao 已提交
6900
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6901 6902

    Returns:
G
gongweibao 已提交
6903
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6904 6905 6906 6907

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6908
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6909
    helper.append_op(
G
fix  
gongweibao 已提交
6910
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6911 6912

    return out
G
merge  
gongweibao 已提交
6913 6914


S
sneaxiy 已提交
6915 6916 6917 6918 6919 6920 6921 6922
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6923 6924 6925 6926 6927 6928
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6929

S
sneaxiy 已提交
6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6941
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6942 6943 6944 6945 6946 6947 6948 6949
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6950
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6951
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6952 6953 6954 6955 6956 6957

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6958 6959 6960 6961 6962
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6973
    return helper.append_activation(out)
S
sneaxiy 已提交
6974 6975


X
Xin Pan 已提交
6976
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6977 6978 6979
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
6980
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6981 6982 6983
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
6984
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6985 6986 6987
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
6988
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6989 6990 6991
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
6992
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6993 6994 6995
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
6996
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6997 6998 6999
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7000
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7012 7013
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7014
        ])
M
minqiyang 已提交
7015 7016


7017
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7018 7019
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7020 7021
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7041
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7060
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7079
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7098
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7235 7236
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out