api_custom_impl.h 5.7 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Z
zyfncg 已提交
17
#include <tuple>
18 19
#include <vector>

20
#include "paddle/phi/api/include/tensor.h"
21
#include "paddle/phi/common/int_array.h"
22
#include "paddle/phi/common/place.h"
23
#include "paddle/phi/common/scalar.h"
24
#include "paddle/utils/optional.h"
25 26 27 28

namespace paddle {
namespace experimental {

29 30 31 32
// NOTE: Separate forward and backward(grad) api impl
// NOTE: The api_impl in this file are arranged in alphabetic order.

////////////////// Forward api impls //////////////////////
33

C
chentianyu03 已提交
34 35 36 37 38 39 40 41
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> adamw_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& learning_rate,
    const Tensor& moment1,
    const Tensor& moment2,
    const Tensor& beta1_pow,
    const Tensor& beta2_pow,
42 43
    const paddle::optional<Tensor>& master_param,
    const paddle::optional<Tensor>& skip_update,
C
chentianyu03 已提交
44 45 46 47 48 49 50 51 52 53 54
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    float lr_ratio,
    float coeff,
    bool with_decay,
    bool lazy_mode,
    int64_t min_row_size_to_use_multithread,
    bool multi_precision,
    bool use_global_beta_pow);

55 56 57 58 59 60 61 62 63 64 65 66 67 68
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu);

H
hong 已提交
69 70 71 72 73 74 75 76 77 78 79 80
Tensor conv2d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search);

81 82 83 84 85 86 87 88 89 90 91 92
Tensor conv3d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search);

93
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking);
94

Z
zyfncg 已提交
95 96 97 98 99
Tensor embedding_impl(const Tensor& x,
                      const Tensor& weight,
                      int64_t padding_idx,
                      bool sparse);

100
std::vector<Tensor> split_impl(const Tensor& x,
101
                               const IntArray& num_or_sections,
102
                               const Scalar& axis);
C
chentianyu03 已提交
103

104 105 106 107 108
std::tuple<Tensor, Tensor, Tensor> momentum_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& velocity,
    const Tensor& learning_rate,
109
    const paddle::optional<Tensor>& master_param,
110 111 112 113 114 115 116
    float mu,
    bool use_nesterov,
    const std::string& regularization_method,
    float regularization_coeff,
    bool multi_precision,
    float rescale_grad);

117 118
////////////////// Backward(grad) api impls //////////////////////

119 120 121 122 123 124 125
void add_n_grad_impl(const std::vector<Tensor>& x,
                     const Tensor& out_grad,
                     std::vector<Tensor*> x_grad);

void conv2d_grad_impl(const Tensor& input,
                      const Tensor& filter,
                      const Tensor& out_grad,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
                      const std::string& paddding_algorithm,
                      int groups,
                      const std::vector<int>& dilations,
                      const std::string& data_format,
                      bool use_addto,
                      int workspace_size_MB,
                      bool exhaustive_search,
                      Tensor* input_grad,
                      Tensor* filter_grad);

void conv3d_grad_impl(const Tensor& input,
                      const Tensor& filter,
                      const Tensor& out_grad,
141 142 143 144 145 146 147 148 149 150 151 152 153 154
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
                      const std::string& paddding_algorithm,
                      int groups,
                      const std::vector<int>& dilations,
                      const std::string& data_format,
                      bool use_addto,
                      int workspace_size_MB,
                      bool exhaustive_search,
                      Tensor* input_grad,
                      Tensor* filter_grad);

void imag_grad_impl(const Tensor& out_grad, Tensor* x_grad);

Z
zyfncg 已提交
155 156 157 158 159 160 161
void embedding_grad_impl(const Tensor& x,
                         const Tensor& weight,
                         const Tensor& out_grad,
                         int64_t padding_idx,
                         bool sparse,
                         Tensor* weight_grad);

162
void real_grad_impl(const Tensor& out_grad, Tensor* x_grad);
Z
zyfncg 已提交
163

164 165
}  // namespace experimental
}  // namespace paddle