operator.h 13.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25
#include "paddle/framework/attribute.h"
Q
qiaolongfei 已提交
26
#include "paddle/framework/block_desc.h"
Y
Yu Yang 已提交
27
#include "paddle/framework/framework.pb.h"
28
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
29
#include "paddle/framework/op_info.h"
Q
QI JUN 已提交
30
#include "paddle/framework/op_kernel_type.h"
Q
qijun 已提交
31
#include "paddle/framework/scope.h"
Q
QI JUN 已提交
32
#include "paddle/framework/selected_rows.h"
Q
qijun 已提交
33 34
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
Y
Yu Yang 已提交
35
#include "paddle/platform/variant.h"
Q
qijun 已提交
36
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
37 38 39 40

namespace paddle {
namespace framework {

41
/// If a variable is a empty variable, that name will be used.
42
constexpr char kEmptyVarName[] = "@EMPTY@";
43 44 45

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
46
constexpr char kTempVarName[] = "@TEMP@";
47 48 49 50

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
51
constexpr char kGradVarSuffix[] = "@GRAD";
52 53

/// Variables with this suffix are supposed to be filled up with zeros.
54
constexpr char kZeroVarSuffix[] = "@ZERO";
55

D
dzhwinter 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
// define some kernel priority
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

/**
 * @brief Use cpu kernel only
 */
void UseCPU();

/**
 * @brief Perfer MKLDNN kernel than Plain CPU kernel
 */
void UseMKLDNN();

/**
 * @brief Perfer CUDA kernel than Plain CPU kernel
 */
void UseCUDA();

/**
 * @brief Perfer cudnn kernel than Plain CUDA kernel
 */
void UseCUDNN();

/**
 * @brief Use all available kernels
 */
void UseALL();
Q
Qiao Longfei 已提交
83

84 85 86 87
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
88
class OperatorBase;
89
class ExecutionContext;
90

Q
Qiao Longfei 已提交
91 92 93 94 95 96 97 98
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
99 100
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
101

Q
Qiao Longfei 已提交
102 103 104
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
105
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
106 107 108 109 110
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

111
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
112 113

  /// Net will call this function to Run an op.
D
dzhwinter 已提交
114
  virtual void Run(const Scope& scope, const platform::Place& place) const = 0;
Y
Yu Yang 已提交
115

T
typhoonzero 已提交
116 117 118
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

Y
Yu Yang 已提交
119 120
  virtual bool IsNetOp() const { return false; }

121 122
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
123 124 125
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
126 127
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
128

Y
Yu Yang 已提交
129
  //! Get a input with argument's name described in `op_proto`
130
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
131
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
132
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
133

Q
qijun 已提交
134 135
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
136
  //! Get a output with argument's name described in `op_proto`
137
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
138 139
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
140
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
141

Y
Yu Yang 已提交
142
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
143

Q
qiaolongfei 已提交
144
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
145
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
146 147
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
148
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
149 150
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
151

Q
qiaolongfei 已提交
152
 protected:
Q
Qiao Longfei 已提交
153
  std::string type_;
D
dongzhihong 已提交
154
  // NOTE: in case of OpGrad, inputs_ contains:
155
  // I (Inputs)
D
dongzhihong 已提交
156 157
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
158
  VariableNameMap inputs_;
Y
Yu Yang 已提交
159

D
dongzhihong 已提交
160 161
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
162
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
163
  AttributeMap attrs_;
164 165 166 167

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
168 169
};

Y
Yu Yang 已提交
170 171
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
172
// register it. i.e. `Clone` method is not needed to define by yourself.
173 174 175
#define DEFINE_OP_CLONE_METHOD(cls)                                            \
  std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final {     \
    return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
176
  }
Y
Yu Yang 已提交
177

Y
Yu Yang 已提交
178 179 180 181
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
182 183
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
184 185 186
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
187
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
188

189 190
class NOP : public OperatorBase {
 public:
191
  using OperatorBase::OperatorBase;
D
dzhwinter 已提交
192
  void Run(const Scope& scope, const platform::Place& place) const override {}
193 194 195
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
196 197
};

198
class ExecutionContext {
Y
Yan Chunwei 已提交
199
 public:
200 201 202
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
203

Q
qiaolongfei 已提交
204 205 206 207
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
208
  template <typename T>
Y
Yu Yang 已提交
209 210
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
211 212
  }

Y
Yu Yang 已提交
213
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
214
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
215 216
  }

Y
Yu Yang 已提交
217
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
218
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
219 220
  }

221
  const Variable* InputVar(const std::string& name) const {
222
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
223
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
224 225
  }

226
  Variable* OutputVar(const std::string& name) const {
227
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
228
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
229 230
  }

231 232
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
233 234
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
235
    res.reserve(names.size());
236 237
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
238 239
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
240
                   });
Y
Yan Chunwei 已提交
241 242 243
    return res;
  }

244
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
245
    auto names = op_.Outputs(name);
246
    std::vector<Variable*> res;
247
    res.reserve(names.size());
248 249
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
250 251
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
252
                   });
Y
Yan Chunwei 已提交
253 254 255
    return res;
  }

256 257
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
258
    auto* var = InputVar(name);
259
    return var == nullptr ? nullptr : &var->Get<T>();
260 261 262 263
  }

  template <typename T>
  T* Output(const std::string& name) const {
264
    auto var = OutputVar(name);
265
    return var == nullptr ? nullptr : var->GetMutable<T>();
266 267 268 269 270 271 272 273
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
274
                   [&](const std::string& sub_name) {
275
                     auto var = scope_.FindVar(sub_name);
276
                     return var == nullptr ? nullptr : &var->Get<T>();
277 278 279 280 281
                   });
    return res;
  }

  template <typename T>
282
  std::vector<T*> MultiOutput(const std::string& name) const {
283
    auto names = op_.Outputs(name);
284
    std::vector<T*> res;
285 286
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
287
                   [&](const std::string& sub_name) {
288
                     auto var = scope_.FindVar(sub_name);
289
                     return var == nullptr ? nullptr : var->GetMutable<T>();
290 291 292 293
                   });
    return res;
  }

294 295 296 297 298 299
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, InputSize(in));
    PADDLE_ENFORCE_LT(j, OutputSize(out));
    auto* in_var = MultiInputVar(in)[i];
    auto* out_var = MultiOutputVar(out)[j];
300
    if (!in_var->IsType<LoDTensor>()) return;
301
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
302
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
303 304 305
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
306 307
  }

308
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
309

Q
QI JUN 已提交
310 311 312 313 314
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

315
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
316
    return device_context_;
Q
qijun 已提交
317
  }
Q
qijun 已提交
318

Q
QI JUN 已提交
319 320 321 322 323 324 325 326
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
327
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
328 329 330
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
331

D
dzhwinter 已提交
332
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
333 334 335 336
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

337
 private:
338 339
  const OperatorBase& op_;
  const Scope& scope_;
340
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
341 342
};

343 344 345 346 347 348 349 350 351 352 353 354 355 356
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
357
class OpKernelBase {
Q
qijun 已提交
358
 public:
Q
qijun 已提交
359
  /**
360
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
361 362
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
363
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
364 365
   */

366
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
367

Y
Yu Yang 已提交
368 369 370 371 372 373 374
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
375 376
};

Y
Yu Yang 已提交
377 378
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
379
  using OpKernelMap =
Y
Yu Yang 已提交
380 381
      std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
                         OpKernelType::Hash>;
Q
Qiao Longfei 已提交
382

Y
Yu Yang 已提交
383 384
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
385 386
      : OperatorBase(type, inputs, outputs, attrs) {}

D
dzhwinter 已提交
387
  void Run(const Scope& scope, const platform::Place& place) const final;
Q
Qiao Longfei 已提交
388

Y
Yu Yang 已提交
389 390 391 392
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
393
  }
Y
Yan Chunwei 已提交
394

395
  bool SupportGPU() const override {
Y
Yu Yang 已提交
396 397 398 399 400
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
401 402
  }

403 404 405
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
406

Q
qiaolongfei 已提交
407
 protected:
Q
Qiao Longfei 已提交
408 409 410
  virtual OpKernelType GetActualKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetExpectedKernelType(
      const OpKernelType& actual_kernel_type) const;
Y
Yu Yang 已提交
411 412

 private:
Y
Yu Yang 已提交
413 414
  // indicate kernel DataType by input data. Defaultly all input data must be
  // same.
415
  proto::DataType IndicateDataType(const ExecutionContext& ctx) const;
Q
Qiao Longfei 已提交
416 417
};

Y
Yu Yang 已提交
418 419
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
420 421
}  // namespace framework
}  // namespace paddle