distribute_fpn_proposals_op.cu 8.5 KB
Newer Older
J
jerrywgz 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
J
jerrywgz 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef __NVCC__
J
jerrywgz 已提交
16
#include "cub/cub.cuh"
17 18 19
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
20
namespace cub = hipcub;
21 22 23
#endif

#include <paddle/fluid/memory/allocation/allocator.h>
J
jerrywgz 已提交
24
#include "paddle/fluid/memory/memcpy.h"
25
#include "paddle/fluid/operators/detection/bbox_util.h"
J
jerrywgz 已提交
26 27
#include "paddle/fluid/operators/detection/distribute_fpn_proposals_op.h"
#include "paddle/fluid/operators/gather.cu.h"
28
#include "paddle/fluid/operators/math/math_function.h"
29
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
J
jerrywgz 已提交
30 31 32 33 34 35 36 37
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

38
static constexpr int kNumCUDAThreads = 64;
J
jerrywgz 已提交
39 40 41 42 43 44 45 46 47 48
static constexpr int kNumMaxinumNumBlocks = 4096;

int const BBoxSize = 4;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <class T>
49
__global__ void GPUDistFpnProposalsHelper(
J
jerrywgz 已提交
50 51 52
    const int nthreads, const T* rois, const int lod_size,
    const int refer_level, const int refer_scale, const int max_level,
    const int min_level, int* roi_batch_id_data, int* sub_lod_list,
53
    int* target_lvls, bool pixel_offset = true) {
54
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
55 56
    const T* offset_roi = rois + i * BBoxSize;
    int roi_batch_ind = roi_batch_id_data[i];
J
jerrywgz 已提交
57
    // get the target level of current rois
58
    T roi_area = RoIArea(offset_roi, pixel_offset);
J
jerrywgz 已提交
59
    T roi_scale = sqrt(roi_area);
60
    int tgt_lvl = floor(
61
        log2(roi_scale / static_cast<T>(refer_scale) + (T)1e-8) + refer_level);
J
jerrywgz 已提交
62 63
    tgt_lvl = min(max_level, max(tgt_lvl, min_level));
    target_lvls[i] = tgt_lvl;
J
jerrywgz 已提交
64
    // compute number of rois in the same batch and same target level
65 66
    platform::CudaAtomicAdd(
        sub_lod_list + (tgt_lvl - min_level) * lod_size + roi_batch_ind, 1);
J
jerrywgz 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  }
}

template <typename DeviceContext, typename T>
class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* fpn_rois = ctx.Input<paddle::framework::LoDTensor>("FpnRois");

    auto multi_fpn_rois = ctx.MultiOutput<LoDTensor>("MultiFpnRois");
    auto* restore_index = ctx.Output<Tensor>("RestoreIndex");

    const int min_level = ctx.Attr<int>("min_level");
    const int max_level = ctx.Attr<int>("max_level");
    const int refer_level = ctx.Attr<int>("refer_level");
    const int refer_scale = ctx.Attr<int>("refer_scale");
83
    const bool pixel_offset = ctx.Attr<bool>("pixel_offset");
J
jerrywgz 已提交
84 85 86
    int num_level = max_level - min_level + 1;

    // check that the fpn_rois is not empty
87 88 89 90 91 92
    if (!ctx.HasInput("RoisNum")) {
      PADDLE_ENFORCE_EQ(
          fpn_rois->lod().size(), 1UL,
          platform::errors::InvalidArgument("DistributeFpnProposalsOp needs LoD"
                                            "with one level"));
    }
J
jerrywgz 已提交
93

94 95 96 97 98 99 100
    std::vector<size_t> fpn_rois_lod;
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num = ctx.Input<Tensor>("RoisNum");
      fpn_rois_lod = GetLodFromRoisNum(rois_num);
    } else {
      fpn_rois_lod = fpn_rois->lod().back();
    }
J
jerrywgz 已提交
101 102 103 104 105
    int lod_size = fpn_rois_lod.size() - 1;
    int roi_num = fpn_rois_lod[lod_size];

    auto& dev_ctx = ctx.template device_context<DeviceContext>();

J
jerrywgz 已提交
106
    // get batch id by lod in CPU
J
jerrywgz 已提交
107 108 109 110 111 112 113 114 115
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({roi_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    for (int n = 0; n < lod_size; ++n) {
      for (size_t i = fpn_rois_lod[n]; i < fpn_rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
J
jerrywgz 已提交
116
    // copy batch id list to GPU
J
jerrywgz 已提交
117 118 119 120 121 122 123
    Tensor roi_batch_id_list_gpu;
    framework::TensorCopySync(roi_batch_id_list, dev_ctx.GetPlace(),
                              &roi_batch_id_list_gpu);

    Tensor sub_lod_list;
    sub_lod_list.Resize({num_level, lod_size});
    int* sub_lod_list_data = sub_lod_list.mutable_data<int>(dev_ctx.GetPlace());
124 125 126
    math::SetConstant<platform::CUDADeviceContext, int> set_zero;
    set_zero(dev_ctx, &sub_lod_list, static_cast<int>(0));

J
jerrywgz 已提交
127 128 129 130
    Tensor target_lvls;
    target_lvls.Resize({roi_num});
    int* target_lvls_data = target_lvls.mutable_data<int>(dev_ctx.GetPlace());

131
    int dist_blocks = NumBlocks(roi_num);
J
jerrywgz 已提交
132
    int threads = kNumCUDAThreads;
J
jerrywgz 已提交
133
    // get target levels and sub_lod list
134
    GPUDistFpnProposalsHelper<T><<<dist_blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
135 136
        roi_num, fpn_rois->data<T>(), lod_size, refer_level, refer_scale,
        max_level, min_level, roi_batch_id_list_gpu.data<int>(),
137
        sub_lod_list_data, target_lvls_data, pixel_offset);
138
    auto place = BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace());
J
jerrywgz 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151

    Tensor index_in_t;
    int* idx_in = index_in_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx, roi_num);
    for_range(RangeInitFunctor{0, 1, idx_in});

    Tensor keys_out_t;
    int* keys_out = keys_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    Tensor index_out_t;
    int* idx_out = index_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());

    // Determine temporary device storage requirements
    size_t temp_storage_bytes = 0;
152 153 154
    cub::DeviceRadixSort::SortPairs<int, int>(
        nullptr, temp_storage_bytes, target_lvls_data, keys_out, idx_in,
        idx_out, roi_num, 0, sizeof(int) * 8, dev_ctx.stream());
J
jerrywgz 已提交
155
    // Allocate temporary storage
156
    auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);
J
jerrywgz 已提交
157

158 159
    // Run sorting operation
    // sort target level to get corresponding index
160
    cub::DeviceRadixSort::SortPairs<int, int>(
J
jerrywgz 已提交
161
        d_temp_storage->ptr(), temp_storage_bytes, target_lvls_data, keys_out,
162
        idx_in, idx_out, roi_num, 0, sizeof(int) * 8, dev_ctx.stream());
J
jerrywgz 已提交
163 164 165

    int* restore_idx_data =
        restore_index->mutable_data<int>({roi_num, 1}, dev_ctx.GetPlace());
166
    // sort current index to get restore index
167
    cub::DeviceRadixSort::SortPairs<int, int>(
J
jerrywgz 已提交
168
        d_temp_storage->ptr(), temp_storage_bytes, idx_out, keys_out, idx_in,
169
        restore_idx_data, roi_num, 0, sizeof(int) * 8, dev_ctx.stream());
J
jerrywgz 已提交
170

171
    int start = 0;
172 173
    auto multi_rois_num = ctx.MultiOutput<Tensor>("MultiLevelRoIsNum");

174 175 176 177 178 179
    std::vector<int> sub_lod_list_cpu(lod_size * num_level);
    memory::Copy(platform::CPUPlace(), sub_lod_list_cpu.data(), place,
                 sub_lod_list_data, sizeof(int) * lod_size * num_level,
                 dev_ctx.stream());
    dev_ctx.Wait();

J
jerrywgz 已提交
180 181
    for (int i = 0; i < num_level; ++i) {
      Tensor sub_lod = sub_lod_list.Slice(i, i + 1);
J
jerrywgz 已提交
182
      // transfer length-based lod to offset-based lod
183 184
      std::vector<size_t> offset(1, 0);
      for (int j = 0; j < lod_size; ++j) {
185
        offset.emplace_back(offset.back() + sub_lod_list_cpu[i * lod_size + j]);
186
      }
J
jerrywgz 已提交
187

188 189 190 191 192 193 194 195 196 197 198 199 200
      int sub_rois_num = offset.back();

      int end = start + sub_rois_num;
      if (end > start) {
        Tensor sub_idx = index_out_t.Slice(start, end);
        start = end;
        multi_fpn_rois[i]->mutable_data<T>({sub_rois_num, kBoxDim},
                                           dev_ctx.GetPlace());
        GPUGather<T>(dev_ctx, *fpn_rois, sub_idx, multi_fpn_rois[i]);
      } else {
        multi_fpn_rois[i]->mutable_data<T>({sub_rois_num, kBoxDim},
                                           dev_ctx.GetPlace());
      }
201 202 203 204 205
      if (multi_rois_num.size() > 0) {
        Tensor* rois_num_t = multi_rois_num[i];
        TensorCopySync(sub_lod, dev_ctx.GetPlace(), rois_num_t);
        rois_num_t->Resize({lod_size});
      }
J
jerrywgz 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
      framework::LoD lod;
      lod.emplace_back(offset);
      multi_fpn_rois[i]->set_lod(lod);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    distribute_fpn_proposals,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           float>,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           double>);