conv_fusion_op.cu 23.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <array>
16

17
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
20
#include "paddle/fluid/operators/conv_op.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22
#include "paddle/phi/kernels/funcs/padding.h"
Q
qingqing01 已提交
23

24
DECLARE_int64(cudnn_exhaustive_search_times);
Q
qingqing01 已提交
25 26 27 28

namespace paddle {
namespace operators {

R
ronnywang 已提交
29
#if PADDLE_WITH_HIP || CUDNN_VERSION >= 7100
30
using Tensor = phi::DenseTensor;
Q
qingqing01 已提交
31 32 33 34 35
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
36
using framework::AlgorithmsCache;
37
using framework::ConvSearchCache;
X
xiaoxiaohehe001 已提交
38
using framework::SearchFuseResult;
39

Q
qingqing01 已提交
40 41 42 43 44 45 46
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
L
Leo Chen 已提交
47
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
48 49 50 51 52
    auto* input = ctx.Input<phi::DenseTensor>("Input");
    auto* filter = ctx.Input<phi::DenseTensor>("Filter");
    auto* bias = ctx.Input<phi::DenseTensor>("Bias");
    auto* residual = ctx.Input<phi::DenseTensor>("ResidualData");
    auto* output = ctx.Output<phi::DenseTensor>("Output");
53
    dev_ctx.template Alloc<T>(output, output->numel() * sizeof(T));
Q
qingqing01 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
67 68 69 70

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

71 72
    Tensor transformed_input_channel(input->dtype());
    Tensor transformed_output(output->dtype());
73 74
    transformed_input_channel = *input;
    transformed_output = *output;
75 76
    T* output_data = transformed_output.data<T>();

Q
qingqing01 已提交
77
    const T* residual_data = residual ? residual->data<T>() : output_data;
78

79 80 81
    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
    auto filter_dims = filter->dims();
82
    framework::DDim in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
83 84

    framework::DDim filter_data_dims =
85 86
        phi::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
87 88
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
89 90

    int data_dim = strides.size();  // 2d or 3d
91
    bool is_sys_pad = phi::funcs::IsSymmetricPadding(paddings, data_dim);
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
111
      framework::DDim new_input_shape(phi::make_ddim(new_input_shape_vec));
112
      transformed_input.Resize(new_input_shape);
L
Leo Chen 已提交
113
      auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
114 115

      transformed_input =
L
Leo Chen 已提交
116
          ctx.AllocateTmpTensor<T, phi::GPUContext>(new_input_shape, dev_ctx);
117 118 119 120
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
L
Leo Chen 已提交
121
          phi::funcs::PadFunction<phi::GPUContext, T, 4>(
122 123 124 125
              dev_ctx,
              input_pad,
              transformed_input_channel,
              pad_value,
126 127 128
              &transformed_input);
        } break;
        case 5: {
L
Leo Chen 已提交
129
          phi::funcs::PadFunction<phi::GPUContext, T, 5>(
130 131 132 133
              dev_ctx,
              input_pad,
              transformed_input_channel,
              pad_value,
134 135 136
              &transformed_input);
        } break;
        default:
137 138
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Operator Conv2DFusion expects Input to be a 4-D or 5-D Tensor. "
139
              "But received the actual dimension = %d, shape = [%s].",
140 141
              rank,
              transformed_input_channel.dims()));
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
      }

    } else {
      transformed_input = transformed_input_channel;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
Q
qingqing01 已提交
158 159 160 161 162 163 164 165 166 167 168 169

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }
R
ronnywang 已提交
170 171 172
#ifdef PADDLE_WITH_HIP
    miopenConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(padding_common, strides, dilations);
173
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
174 175 176 177 178 179
        platform::dynload::miopenSetConvolutionGroupCount(cudnn_conv_desc,
                                                          groups));
    // Now only support NCHW
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
    miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
180
        layout, phi::vectorize<int>(transformed_input.dims()));
R
ronnywang 已提交
181
    miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
182
        layout, phi::vectorize<int>(transformed_output.dims()));
183
    miopenTensorDescriptor_t cudnn_filter_desc =
184
        filter_desc.descriptor<T>(layout, phi::vectorize<int>(filter->dims()));
R
ronnywang 已提交
185 186 187 188
    miopenTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    miopenActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);
Q
qingqing01 已提交
189

R
ronnywang 已提交
190 191 192 193
    miopenConvFwdAlgorithm_t algo;
    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

194 195
    auto x_dims = phi::vectorize(transformed_input.dims());
    auto f_dims = phi::vectorize(filter->dims());
R
ronnywang 已提交
196 197

    size_t workspace_size = 0;
198
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
199
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
200 201 202 203 204 205
            handle,
            cudnn_filter_desc,
            cudnn_input_desc,
            cudnn_conv_desc,
            cudnn_output_desc,
            &workspace_size));
R
ronnywang 已提交
206 207 208
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
209
      PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
210
          platform::dynload::miopenFindConvolutionForwardAlgorithm(
211 212 213 214 215 216 217 218 219 220 221 222 223 224
              handle,
              cudnn_input_desc,
              input_data,
              cudnn_filter_desc,
              filter_data,
              cudnn_conv_desc,
              cudnn_output_desc,
              output_data,
              kNUM_CUDNN_FWD_ALGS,
              &find_count,
              &find_result,
              cudnn_workspace_ptr,
              workspace_size,
              false));
R
ronnywang 已提交
225 226 227 228 229 230 231 232
    };
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.fwd_algo;
    VLOG(3) << "cuDNN forward algo " << algo;

    {
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
      auto cudnn_func = [&](void* cudnn_workspace) {
233 234 235 236 237 238 239 240 241 242 243 244 245 246
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenConvolutionForward(handle,
                                                        &alpha,
                                                        cudnn_input_desc,
                                                        input_data,
                                                        cudnn_filter_desc,
                                                        filter_data,
                                                        cudnn_conv_desc,
                                                        algo,
                                                        &beta,
                                                        cudnn_output_desc,
                                                        output_data,
                                                        cudnn_workspace,
                                                        workspace_size));
R
ronnywang 已提交
247 248
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size);
249
      PADDLE_ENFORCE_GPU_SUCCESS(
250 251 252 253 254 255 256
          platform::dynload::miopenConvolutionForwardBias(handle,
                                                          &alpha,
                                                          cudnn_bias_desc,
                                                          bias_data,
                                                          &beta,
                                                          cudnn_output_desc,
                                                          output_data));
R
ronnywang 已提交
257
      if (activation != "identity") {
258 259 260 261 262 263 264 265 266
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenActivationForward(handle,
                                                       cudnn_act_desc,
                                                       &alpha,
                                                       cudnn_output_desc,
                                                       output_data,
                                                       &beta,
                                                       cudnn_output_desc,
                                                       output_data));
R
ronnywang 已提交
267 268
      }
      if (residual) {
269 270 271 272 273 274 275 276 277 278 279 280
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenOpTensor(handle,
                                              miopenTensorOpAdd,
                                              &alpha,
                                              cudnn_output_desc,
                                              output_data,
                                              &alpha,
                                              cudnn_output_desc,
                                              residual_data,
                                              &beta,
                                              cudnn_output_desc,
                                              output_data));
R
ronnywang 已提交
281 282 283
      }
    }
#else  // PADDLE_WITH_HIP
Q
qingqing01 已提交
284
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
285
        conv_desc.descriptor<T>(padding_common, strides, dilations);
286 287
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
Q
qingqing01 已提交
288 289

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
290
        layout, phi::vectorize<int>(transformed_input.dims()));
Q
qingqing01 已提交
291
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
292
        layout, phi::vectorize<int>(transformed_output.dims()));
293
    cudnnFilterDescriptor_t cudnn_filter_desc =
294
        filter_desc.descriptor<T>(layout, phi::vectorize<int>(filter->dims()));
Q
qingqing01 已提交
295
    // Now only support NCHW
296 297
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
Q
qingqing01 已提交
298 299 300 301 302 303 304
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
305
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
306 307
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
308
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
309 310 311 312 313 314 315
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
316
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
X
xiaoxiaohehe001 已提交
317
    auto dtype = platform::CudnnDataType<T>::type;
Q
qingqing01 已提交
318

319
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
320
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));
X
xiaoxiaohehe001 已提交
321 322 323 324
    if (dtype == CUDNN_DATA_HALF) {
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
    }
A
AshburnLee 已提交
325
#if CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
A
AshburnLee 已提交
326
    if (!platform::allow_tf32_cudnn) {
327 328
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_FMA_MATH));
A
AshburnLee 已提交
329
    }
A
AshburnLee 已提交
330
#endif  // CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
Q
qingqing01 已提交
331

332 333
    auto x_dims = phi::vectorize(transformed_input.dims());
    auto f_dims = phi::vectorize(filter->dims());
334
    if (!exhaustive_search) {
335
#if CUDNN_VERSION >= 8000
336 337 338 339 340
      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
341
      PADDLE_ENFORCE_GPU_SUCCESS(
342
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
343 344 345 346 347 348 349
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
              kNUM_CUDNN_FWD_ALGS,
              &perf_count,
350 351
              perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
X
xiaoxiaohehe001 已提交
352
#else
353
      PADDLE_ENFORCE_GPU_SUCCESS(
X
xiaoxiaohehe001 已提交
354
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
355 356 357 358 359
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
X
xiaoxiaohehe001 已提交
360 361 362 363
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit,
              &algo));
#endif
364
      PADDLE_ENFORCE_GPU_SUCCESS(
X
xiaoxiaohehe001 已提交
365
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
366 367 368 369 370
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
X
xiaoxiaohehe001 已提交
371 372 373 374
              algo,
              &workspace_size_in_bytes));
      if (workspace_size_in_bytes > workspace_size_limit)
        workspace_size_limit = workspace_size_in_bytes;
375
      VLOG(3) << "cuDNN forward algo " << algo;
Q
qingqing01 已提交
376
    } else {
X
xiaoxiaohehe001 已提交
377 378
      std::function<SearchFuseResult<cudnnConvolutionFwdAlgo_t>()> search_func =
          [&]() -> SearchFuseResult<cudnnConvolutionFwdAlgo_t> {
Q
qingqing01 已提交
379
        int returned_algo_count;
X
xiaoxiaohehe001 已提交
380
        SearchFuseResult<cudnnConvolutionFwdAlgo_t> fwd_result;
Q
qingqing01 已提交
381 382
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
383
        auto cudnn_find_func = [&](void* cudnn_workspace) {
384
          PADDLE_ENFORCE_GPU_SUCCESS(
C
chengduo 已提交
385
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
386 387 388 389 390 391 392 393 394 395 396 397 398
                  handle,
                  cudnn_input_desc,
                  input_data,
                  cudnn_filter_desc,
                  filter_data,
                  cudnn_conv_desc,
                  cudnn_output_desc,
                  output_data,
                  kNUM_CUDNN_FWD_ALGS,
                  &returned_algo_count,
                  fwd_perf_stat.data(),
                  cudnn_workspace,
                  workspace_size_limit));
C
chengduo 已提交
399
        };
400
        workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
401 402 403 404 405 406
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
X
xiaoxiaohehe001 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
                handle,
                cudnn_input_desc,
                cudnn_filter_desc,
                cudnn_conv_desc,
                cudnn_output_desc,
                fwd_perf_stat[0].algo,
                &workspace_size_in_bytes));
        // PADDLE_ENFORCE_LE(
        //     workspace_size_in_bytes,
        //     workspace_size_limit,
        //     platform::errors::InvalidArgument(
        //         "The actual workspace size to be allocated for cuDNN is
        //         expected " "to be less than the limit. But received: the
        //         actual workspace " "size = %d, limit = %d.",
        //         workspace_size_in_bytes,
        //         workspace_size_limit));

        fwd_result.algo = fwd_perf_stat[0].algo;
        fwd_result.workspace_size = workspace_size_in_bytes;
        return fwd_result;
Q
qingqing01 已提交
430
      };
X
xiaoxiaohehe001 已提交
431
      AlgorithmsCache<SearchFuseResult<cudnnConvolutionFwdAlgo_t>>& algo_cache =
432
          *(framework::ConvSearchCache::Instance().GetConvFusion());
Q
qingqing01 已提交
433
      int search_times = ctx.Attr<int>("search_times");
X
xiaoxiaohehe001 已提交
434
      SearchFuseResult<cudnnConvolutionFwdAlgo_t> algo_result;
Q
qingqing01 已提交
435 436
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
437
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
438 439 440 441
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
X
xiaoxiaohehe001 已提交
442
        algo_result = algo_cache.GetAlgorithm(
443
            x_dims[2] * x_dims[3], search_times, 0, search_func);
X
xiaoxiaohehe001 已提交
444 445
        algo = algo_result.algo;
        workspace_size_in_bytes = algo_result.workspace_size;
Q
qingqing01 已提交
446
      } else {
X
xiaoxiaohehe001 已提交
447 448 449 450 451 452 453 454 455 456
        algo_result = algo_cache.GetAlgorithm(x_dims,
                                              f_dims,
                                              strides,
                                              paddings,
                                              dilations,
                                              0,
                                              dtype,
                                              search_func);
        algo = algo_result.algo;
        workspace_size_in_bytes = algo_result.workspace_size;
Q
qingqing01 已提交
457 458 459
      }
      VLOG(3) << "choose algo " << algo;
    }
N
nhzlx 已提交
460
    if ((activation == "identity") && (!residual)) {
461 462 463 464 465 466
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
467
      auto cudnn_func = [&](void* cudnn_workspace) {
468 469 470 471 472 473 474 475 476 477 478 479 480 481
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnConvolutionForward(handle,
                                                       &alpha,
                                                       cudnn_input_desc,
                                                       input_data,
                                                       cudnn_filter_desc,
                                                       filter_data,
                                                       cudnn_conv_desc,
                                                       algo,
                                                       cudnn_workspace,
                                                       workspace_size_in_bytes,
                                                       &beta,
                                                       cudnn_output_desc,
                                                       output_data));
C
chengduo 已提交
482 483
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
484 485 486 487 488 489 490 491
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnAddTensor(handle,
                                            &alpha,
                                            cudnn_bias_desc,
                                            bias_data,
                                            &alpha,
                                            cudnn_output_desc,
                                            output_data));
492 493 494 495 496 497 498
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
499
      auto cudnn_func = [&](void* cudnn_workspace) {
500
        PADDLE_ENFORCE_GPU_SUCCESS(
501
            platform::dynload::cudnnConvolutionBiasActivationForward(
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
                handle,
                &alpha1,
                cudnn_input_desc,
                input_data,
                cudnn_filter_desc,
                filter_data,
                cudnn_conv_desc,
                algo,
                cudnn_workspace,
                workspace_size_in_bytes,
                &alpha2,
                cudnn_output_desc,
                residual_data,
                cudnn_bias_desc,
                bias_data,
                cudnn_act_desc,
                cudnn_output_desc,
                output_data));
C
chengduo 已提交
520 521
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
522
    }
R
ronnywang 已提交
523
#endif
Q
qingqing01 已提交
524 525
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
526
      auto outs = ctx.MultiOutput<phi::DenseTensor>("Outputs");
Q
qingqing01 已提交
527 528
      if (x_dims[0] == 1) {
        // share data with Output
529
        phi::DenseTensor t;
Q
qingqing01 已提交
530 531 532 533 534 535 536 537 538 539 540 541
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
542
        PADDLE_THROW(platform::errors::Unimplemented(
543
            "Input with batch size greater than 1 is unsupported. The received "
544
            "batch size is %d, Input's shape is [%s].",
545 546
            x_dims[0],
            phi::make_ddim(x_dims)));
Q
qingqing01 已提交
547 548
      }
    }
Q
qingqing01 已提交
549 550
  }
};
D
Dang Qingqing 已提交
551
#endif
Q
qingqing01 已提交
552 553 554 555 556

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
R
ronnywang 已提交
557
#if CUDNN_VERSION >= 7100
558 559 560 561 562
REGISTER_OP_CUDA_KERNEL(
    conv2d_fusion,
    ops::CUDNNConvFusionOpKernel<float>,
    ops::CUDNNConvFusionOpKernel<double>,
    ops::CUDNNConvFusionOpKernel<paddle::platform::float16>);
D
Dang Qingqing 已提交
563
#endif
R
ronnywang 已提交
564 565 566
#ifdef PADDLE_WITH_HIP
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>);
#endif