extension.py 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the extention functions
16

L
Li Fuchen 已提交
17 18
import numpy as np
from ...fluid.data_feeder import check_dtype
19
from ...fluid.layer_helper import LayerHelper
20 21
from ...static import Variable
from ...tensor.creation import assign
Z
zhiboniu 已提交
22
from ...fluid import dygraph_utils
23
from ...tensor.layer_function_generator import templatedoc
Z
zhiboniu 已提交
24
from paddle import in_dynamic_mode
25
from paddle import _C_ops, _legacy_C_ops
26 27
from ...fluid.framework import _non_static_mode, _in_legacy_dygraph, in_dygraph_mode
from ...fluid.data_feeder import check_variable_and_dtype, check_type
28
from ...framework import core, convert_np_dtype_to_dtype_
29

30 31
__all__ = []

32

L
Li Fuchen 已提交
33 34
def diag_embed(input, offset=0, dim1=-2, dim2=-1):
    """
35 36
    This OP creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2)
    are filled by ``input``. By default, a 2D plane formed by the last two dimensions
L
Li Fuchen 已提交
37
    of the returned tensor will be selected.
38

L
Li Fuchen 已提交
39
    The argument ``offset`` determines which diagonal is generated:
40

L
Li Fuchen 已提交
41 42 43
    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
44

L
Li Fuchen 已提交
45
    Args:
46
        input(Tensor|numpy.ndarray): The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64.
L
Li Fuchen 已提交
47 48 49
        offset(int, optional): Which diagonal to consider. Default: 0 (main diagonal).
        dim1(int, optional): The first dimension with respect to which to take diagonal. Default: -2.
        dim2(int, optional): The second dimension with respect to which to take diagonal. Default: -1.
50

L
Li Fuchen 已提交
51
    Returns:
52
        Tensor, the output data type is the same as input data type.
53

L
Li Fuchen 已提交
54 55
    Examples:
        .. code-block:: python
56

L
Li Fuchen 已提交
57 58
            import paddle.nn.functional as F
            import numpy as np
59

L
Li Fuchen 已提交
60
            diag_embed = np.random.randn(2, 3).astype('float32')
61 62
            # [[ 0.7545889 , -0.25074545,  0.5929117 ],
            #  [-0.6097662 , -0.01753256,  0.619769  ]]
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

            data1 = F.diag_embed(diag_embed)
            data1.numpy()
            # [[[ 0.7545889 ,  0.        ,  0.        ],
            #  [ 0.        , -0.25074545,  0.        ],
            #   [ 0.        ,  0.        ,  0.5929117 ]],

            # [[-0.6097662 ,  0.        ,  0.        ],
            #  [ 0.        , -0.01753256,  0.        ],
            #  [ 0.        ,  0.        ,  0.619769  ]]]

            data2 = F.diag_embed(diag_embed, offset=-1, dim1=0, dim2=2)
            data2.numpy()
            # [[[ 0.        ,  0.        ,  0.        ,  0.        ],
            #   [ 0.7545889 ,  0.        ,  0.        ,  0.        ],
            #   [ 0.        , -0.25074545,  0.        ,  0.        ],
            #   [ 0.        ,  0.        ,  0.5929117 ,  0.        ]],
            #
            #  [[ 0.        ,  0.        ,  0.        ,  0.        ],
            #   [-0.6097662 ,  0.        ,  0.        ,  0.        ],
            #   [ 0.        , -0.01753256,  0.        ,  0.        ],
            #   [ 0.        ,  0.        ,  0.619769  ,  0.        ]]]

            data3 = F.diag_embed(diag_embed, offset=1, dim1=0, dim2=2)
            data3.numpy()
            # [[[ 0.        ,  0.7545889 ,  0.        ,  0.        ],
            #   [ 0.        , -0.6097662 ,  0.        ,  0.        ]],
            #
            #  [[ 0.        ,  0.        , -0.25074545,  0.        ],
            #   [ 0.        ,  0.        , -0.01753256,  0.        ]],
            #
            #  [[ 0.        ,  0.        ,  0.        ,  0.5929117 ],
            #   [ 0.        ,  0.        ,  0.        ,  0.619769  ]],
            #
            #  [[ 0.        ,  0.        ,  0.        ,  0.        ],
            #   [ 0.        ,  0.        ,  0.        ,  0.        ]]]
L
Li Fuchen 已提交
99 100 101 102
    """
    if not isinstance(input, Variable):
        input = assign(input)

103
    if in_dygraph_mode():
104
        return _C_ops.diag_embed(input, offset, dim1, dim2)
105
    elif in_dynamic_mode():
106 107
        return _legacy_C_ops.diag_embed(input, "offset", offset, "dim1", dim1,
                                        "dim2", dim2)
108 109 110 111

    inputs = {'Input': [input]}
    attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2}

L
Li Fuchen 已提交
112 113 114 115 116 117
    def __check_input(input, offset, dim1, dim2):
        check_dtype(input.dtype, 'Input',
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'diag_embed')

        input_shape = list(input.shape)
118
        assert len(input_shape) >= 1,                     \
L
Li Fuchen 已提交
119 120
                "Input must be at least 1-dimensional, "   \
                "But received Input's dimensional: %s.\n" %  \
121
                len(input_shape)
L
Li Fuchen 已提交
122

123 124 125
        assert np.abs(dim1) <= len(input_shape),    \
            "Dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape) + 1), len(input_shape), dim1)
L
Li Fuchen 已提交
126

127 128 129
        assert np.abs(dim2) <= len(input_shape),      \
            "Dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape) + 1), len(input_shape), dim2)
L
Li Fuchen 已提交
130 131 132

        dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1 + 1
        dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2 + 1
133
        assert dim1_ != dim2_,       \
L
Li Fuchen 已提交
134
               "dim1 and dim2 cannot be the same dimension." \
135
                "But received dim1 = %d, dim2 = %d\n"%(dim1, dim2)
L
Li Fuchen 已提交
136

137
    __check_input(input, offset, dim1, dim2)
L
Li Fuchen 已提交
138 139 140 141
    helper = LayerHelper("diag_embed", **locals())

    out = helper.create_variable_for_type_inference(dtype=input.dtype)

142 143 144 145 146 147 148 149
    helper.append_op(type='diag_embed',
                     inputs={'Input': [input]},
                     attrs={
                         'offset': offset,
                         'dim1': dim1,
                         'dim2': dim2
                     },
                     outputs={'Out': [out]})
L
Li Fuchen 已提交
150 151
    out.stop_gradient = True
    return out
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192


def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    r"""
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:

    .. math::

        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    .. code-block:: text

        Case:

        Consider input:
            x = [3, 1, 1, 0]    max_len = 4

        then we get out:
            mask = [[1, 1, 1, 0],
                    [1, 0, 0, 0],
                    [1, 0, 0, 0],
                    [0, 0, 0, 0]]

    Args:
        x (Variable): Input tensor of sequence_mask layer, \
            whose elements are integers less than :code:`maxlen`. \
            Tensor or LodTensor with shape [d_1, d_2, ..., d_n].
        maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|paddle.dtype|str, optional): Data type of the output, \
             ``int64`` by default.
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

193
    Returns:
194
            Tensor, The output sequence mask. Tensor with shape [d_1, d_2, ..., d_n, maxlen] \
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
            and data type of :code:`dtype`. The data type should be bool, float32, float64, int8, \
            int32 or int64.

    Examples:
        .. code-block:: python

            import paddle

            lengths = paddle.to_tensor([10, 9, 8])
            mask = paddle.nn.functional.sequence_mask(lengths)

            print(mask.numpy())
            # [[1 1 1 1 1 1 1 1 1 1]
            #  [1 1 1 1 1 1 1 1 1 0]
            #  [1 1 1 1 1 1 1 1 0 0]]

    """

    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        if maxlen is not None:
            if isinstance(maxlen, core.eager.Tensor):
                attrs = ('out_dtype', dtype)
219
                out = _legacy_C_ops.sequence_mask(x, maxlen, *attrs)
220 221
            else:
                attrs = ('out_dtype', dtype, 'maxlen', maxlen)
222
                out = _legacy_C_ops.sequence_mask(x, None, *attrs)
223 224 225 226 227 228 229 230 231 232 233 234 235 236
            out.stop_gradient = True
            return out

    helper = LayerHelper('sequence_mask', **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

237 238 239 240
    helper.append_op(type='sequence_mask',
                     inputs=inputs,
                     outputs={'Y': out},
                     attrs=attrs)
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

    out.stop_gradient = True
    return out


def gather_tree(ids, parents):
    r"""
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:
                gather_tree(ids, parents)
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Tensor): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Tensor): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
            A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle

            ids = paddle.to_tensor([[[2, 2], [6, 1]], [[3, 9], [6, 1]], [[0, 1], [9, 0]]])

            parents = paddle.to_tensor([[[0, 0], [1, 1]], [[1, 0], [1, 0]], [[0, 0], [0, 1]]])

            final_sequences = paddle.nn.functional.gather_tree(ids, parents)
            # [[[2, 2], [1, 6]], [[3, 3], [6, 1]], [[0, 1], [9, 0]]]

    """
    if in_dygraph_mode():
308
        return _C_ops.gather_tree(ids, parents)
309 310
    else:
        if _in_legacy_dygraph():
311
            return _legacy_C_ops.gather_tree(ids, parents)
312 313 314 315 316 317 318 319
        else:
            helper = LayerHelper('gather_tree', **locals())
            check_variable_and_dtype(ids, 'ids', ['int32', 'int64'],
                                     'gather_tree')
            check_variable_and_dtype(parents, 'parents', ['int32', 'int64'],
                                     'gather_tree')
            out = helper.create_variable_for_type_inference(dtype=ids.dtype)

320 321 322 323 324 325
            helper.append_op(type="gather_tree",
                             inputs={
                                 "Ids": ids,
                                 "Parents": parents
                             },
                             outputs={"Out": out})
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

            return out


@templatedoc()
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
    """

    **Temporal Shift Operator**

    ${comment}

    Args:
        x(Tensor): ${x_comment}
        seg_num(int): ${seg_num_comment}
        shift_ratio(float): ${shift_ratio_comment}
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Returns:
        out(Tensor): The temporal shifting result is a tensor with the
        same shape and same data type as the input.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([6, 4, 2, 2])
            out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
    """
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))
C
ccrrong 已提交
364
    if in_dygraph_mode():
365
        return _C_ops.temporal_shift(x, seg_num, shift_ratio, data_format)
366
    if _non_static_mode():
367 368 369
        return _legacy_C_ops.temporal_shift(x, 'seg_num', seg_num,
                                            'shift_ratio', shift_ratio,
                                            'data_format', data_format)
370 371 372 373 374 375 376 377 378 379 380

    helper = LayerHelper("temporal_shift", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'temporal_shift')
    check_type(seg_num, 'seg_num', int, 'temporal_shift')
    check_type(shift_ratio, 'shift_ratio', float, 'temporal_shift')

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

381 382 383 384 385 386 387 388
    helper.append_op(type="temporal_shift",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={
                         "seg_num": seg_num,
                         "shift_ratio": shift_ratio,
                         "data_format": data_format
                     })
389
    return out