test_while_op.py 8.0 KB
Newer Older
C
chengduoZH 已提交
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yang Yang(Tony) 已提交
15
import unittest
16 17 18

import numpy

L
Leo Chen 已提交
19
import paddle
20
import paddle.fluid as fluid
21 22
import paddle.fluid.core as core
import paddle.fluid.layers as layers
23
from paddle.fluid.backward import append_backward
24
from paddle.fluid.executor import Executor
Y
Yang Yang(Tony) 已提交
25

26 27
paddle.enable_static()

Y
Yang Yang(Tony) 已提交
28 29

class TestWhileOp(unittest.TestCase):
30
    def simple_net(self):
31 32 33 34 35 36 37 38 39
        d0 = layers.data(
            "d0", shape=[10], append_batch_size=False, dtype='float32'
        )
        d1 = layers.data(
            "d1", shape=[10], append_batch_size=False, dtype='float32'
        )
        d2 = layers.data(
            "d2", shape=[10], append_batch_size=False, dtype='float32'
        )
Y
Yang Yang(Tony) 已提交
40 41 42
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
        init = layers.zeros(shape=[10], dtype='float32')
Y
Yang Yang(Tony) 已提交
43
        mem_array = layers.array_write(x=init, i=i)
Y
Yang Yang(Tony) 已提交
44 45 46 47 48 49 50
        data_array = layers.array_write(x=d0, i=i)
        i = layers.increment(i)
        layers.array_write(d1, i, array=data_array)
        i = layers.increment(i)
        layers.array_write(d2, i, array=data_array)
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
C
chengduoZH 已提交
51
        array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
Y
Yang Yang(Tony) 已提交
52
        array_len.stop_gradient = True
Y
Yang Yang(Tony) 已提交
53
        cond = layers.less_than(x=i, y=array_len)
C
chengduoZH 已提交
54 55 56 57 58
        j = layers.fill_constant(shape=[1], dtype='int64', value=1)
        j.stop_gradient = True
        array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
        array_len2.stop_gradient = True
        cond2 = layers.less_than(x=j, y=array_len2)
Y
Yang Yang(Tony) 已提交
59
        while_op = layers.While(cond=cond)
C
chengduoZH 已提交
60
        while_op2 = layers.While(cond=cond2)
Y
Yang Yang(Tony) 已提交
61 62 63 64
        with while_op.block():
            d = layers.array_read(array=data_array, i=i)
            prev = layers.array_read(array=mem_array, i=i)
            result = layers.sums(input=[d, prev])
Y
Yang Yang(Tony) 已提交
65 66

            i = layers.increment(x=i, in_place=True)
Y
Yang Yang(Tony) 已提交
67 68
            layers.array_write(result, i=i, array=mem_array)
            layers.less_than(x=i, y=array_len, cond=cond)
Y
Yang Yang(Tony) 已提交
69

C
chengduoZH 已提交
70 71 72 73 74 75 76 77 78
            with while_op2.block():
                d2 = layers.array_read(array=data_array, i=j)
                prev2 = layers.array_read(array=mem_array, i=j)
                result2 = layers.sums(input=[d2, prev2])

                j = layers.increment(x=j, in_place=True)
                layers.array_write(result2, i=j, array=mem_array)
                layers.less_than(x=j, y=array_len2, cond=cond2)
        sum_result = layers.array_read(array=mem_array, i=j)
79
        loss = paddle.mean(sum_result)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        return loss, sum_result

    def test_simple_net(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            loss, sum_result = self.simple_net()

            append_backward(loss)

            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []

            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))

97 98 99 100
            outs = exe.run(
                feed={'d0': d[0], 'd1': d[1], 'd2': d[2]},
                fetch_list=[sum_result],
            )
101
            self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01)
Y
Yang Yang(Tony) 已提交
102

103 104 105 106 107 108
    def test_simple_net_forward(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            self.simple_net()
            binary = fluid.compiler.CompiledProgram(main_program)
Y
Yang Yang(Tony) 已提交
109

110 111 112
            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []
Y
Yang Yang(Tony) 已提交
113

114 115
            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))
Y
Yang Yang(Tony) 已提交
116

117 118
            for _ in range(2):
                exe.run(binary, feed={'d0': d[0], 'd1': d[1], 'd2': d[2]})
Y
Yang Yang(Tony) 已提交
119

120 121 122 123 124 125 126 127 128 129
    def test_exceptions(self):
        i = layers.zeros(shape=[2], dtype='int64')
        array_len = layers.fill_constant(shape=[2], dtype='int64', value=1)
        cond = layers.less_than(x=i, y=array_len)
        with self.assertRaises(TypeError):
            layers.While(cond=cond)
        cond = layers.cast(cond, dtype='float64')
        with self.assertRaises(TypeError):
            layers.While(cond=cond)

Y
Yang Yang(Tony) 已提交
130

131 132 133 134 135 136 137 138 139 140 141
class BadInputTest(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
                x = [1, 2, 3]
                fluid.layers.increment(x)

            self.assertRaises(TypeError, test_bad_x)


142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
class TestIgnoreVarNameInWhile(unittest.TestCase):
    def test_ignore_var(self):
        def cond(i, ten, temp, y):
            return i < ten

        def body_func(i, ten, batch_info, origin_seq):
            print(batch_info)
            batch_info = fluid.contrib.layers.shuffle_batch(batch_info)
            print(batch_info)
            i = i + 1
            return [i, ten, batch_info, origin_seq]

        x = fluid.layers.data(name='x', shape=[-1, 1, 4])
        y = fluid.layers.data(name='y', shape=[-1, 1, 1])
        temp = layers.concat(input=[x, y], axis=-1)
        i = layers.fill_constant(shape=[1], value=0, dtype='int32')
        num = layers.fill_constant(shape=[1], value=5, dtype='int32')

160 161 162
        i, ten, shuffle_temp, y = layers.while_loop(
            cond, body_func, [i, num, temp, y]
        )
163 164 165 166 167 168 169 170 171 172 173

        output = shuffle_temp

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        input_x = numpy.array([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10]])
        input_x = input_x.reshape(3, 1, 4)
        input_y = numpy.array([[10], [12], [33]])
        input_y = input_y.reshape(3, 1, 1)

174 175 176 177 178
        (res,) = exe.run(
            fluid.default_main_program(),
            feed={'x': input_x, 'y': input_y},
            fetch_list=[output],
        )
179 180 181 182

        self.assertListEqual(list(res.shape), [3, 1, 5])


183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
class TestOutputsMustExistsInputs(unittest.TestCase):
    def test_outputs_exists_inputs(self):
        """
        We guarantee that the output tensor must be in the input tensor, so that the output and input can correspond to each other, but the input can be greater than the number of outputs. It's required in paddle2onnx.
        """
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):

            def func(x):
                s = paddle.zeros([1])
                i = paddle.ones([1])
                max_len = paddle.shape(x)[0]

                def cond(i, s, x):
                    return i < max_len

                def body(i, s, x):
                    iter = x[i]
                    s += iter
                    i += 1
                    return i, s, x

                [i, s, x] = paddle.static.nn.while_loop(cond, body, [i, s, x])
                return s

            paddle.enable_static()
            x = paddle.static.data(shape=[-1], name='x')
            func(x)
        for op in main_program.block(0).ops:
            if op.type == "while":
                for out_name in op.output("Out"):
215 216
                    if out_name in op.input("Condition"):
                        continue
217 218
                    self.assertTrue(
                        out_name in op.input("X"),
219 220 221 222
                        "In while op, the variable in output(`Out`) must exists in inputs(`X`), but the variable with name `{}` not meet the precondition.".format(
                            out_name
                        ),
                    )
223 224


Y
Yang Yang(Tony) 已提交
225 226
if __name__ == '__main__':
    unittest.main()