fetch_v2_op.cc 7.6 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {
class OpDesc;
class InferShapeContext;
template <typename T>
class EmptyGradOpMaker;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

namespace paddle {
namespace operators {

static void DataCopy(const framework::LoDTensor &src_item,
                     const std::string &fetch_var_name,
                     framework::LoDTensor *dst_item,
                     const platform::DeviceContext &dev_ctx) {
  if (src_item.IsInitialized() && src_item.numel() > 0) {
#ifdef PADDLE_WITH_MKLDNN
    // Conversion from MKL-DNN to Paddle
    if (src_item.layout() == framework::DataLayout::kMKLDNN) {
      framework::Tensor out;
      // Convert to desired Paddle layout, apart from grads of filter
      // as params are not a subject to paddle's data_format
      framework::innerTransDataLayoutFromMKLDNN(
          src_item.layout(), fetch_var_name == framework::GradVarName("Filter")
                                 ? framework::DataLayout::kNCHW
                                 : paddle::platform::MKLDNNDeviceContext::tls()
                                       .get_cur_paddle_data_layout(),
          src_item, &out, platform::CPUPlace());
      TensorCopy(src_item, platform::CPUPlace(), dev_ctx, dst_item);
    } else {
      if (platform::is_gpu_place(src_item.place())) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        TensorCopy(src_item, platform::CUDAPinnedPlace(), dev_ctx, dst_item);
#endif
      } else {
        TensorCopy(src_item, platform::CPUPlace(), dst_item);
      }
    }
#else
    if (platform::is_gpu_place(src_item.place())) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      TensorCopy(src_item, platform::CUDAPinnedPlace(), dev_ctx, dst_item);
#endif
    } else {
      TensorCopy(src_item, platform::CPUPlace(), dst_item);
    }
#endif

  } else {
    // Not copy, if the src tensor is empty.
    dst_item->clear();
    dst_item->Resize({0});
  }
  dst_item->set_lod(src_item.lod());
}

class FetchV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }
};

class FetchV2InferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    ctx->SyncTypeAndDataType("X", "Out");
  }
};

class FetchV2Kernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto fetch_var_name = ctx.InputName("X");
    auto *fetch_var = ctx.InputVar("X");
    if (fetch_var == nullptr) {
      return;
    }
    PADDLE_ENFORCE_EQ(ctx.HasOutput("Out"), true,
                      platform::errors::NotFound(
                          "Output(Out) of memcpy_d2h_op is not found."));
    auto *out_var = ctx.OutputVar("Out");
    // Get dev_ctx from ExecutionContext, it's D2H stream
    auto &dev_ctx = ctx.device_context();

    int col = ctx.Attr<int>("col");
    PADDLE_ENFORCE_GE(
        col, 0, platform::errors::InvalidArgument(
                    "Expected the column index (the attribute 'col' of "
                    "operator 'Fetch') of current fetching variable to be "
                    "no less than 0. But received column index = %d.",
                    col));

    auto *fetch_list = out_var->GetMutable<framework::FetchList>();

    if (static_cast<size_t>(col) >= fetch_list->size()) {
      fetch_list->resize(col + 1);
    }

    if (fetch_var->IsType<framework::LoDTensor>()) {
      auto &src_item = fetch_var->Get<framework::LoDTensor>();
      auto *dst_item = &(BOOST_GET(framework::LoDTensor, fetch_list->at(col)));
      DataCopy(src_item, fetch_var_name, dst_item, dev_ctx);
    } else {
      auto &src_item = fetch_var->Get<framework::LoDTensorArray>();
      framework::LoDTensorArray tmp(src_item.size());
      fetch_list->at(col) = tmp;
      auto &dst_item =
          BOOST_GET(framework::LoDTensorArray, fetch_list->at(col));
      for (size_t i = 0; i < src_item.size(); ++i) {
        DataCopy(src_item[i], fetch_var_name, &dst_item[i], dev_ctx);
      }
    }
  }
};

class FetchV2OpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(LoDTensor) The resulted LoDTensor which is expected to return "
             "to users.");
    AddOutput("Out",
              "(vector<LoDTensor>) A fetching list of LoDTensor which may have "
              "different dimension, shape and data type.");
    AddAttr<int>("col", "(int) The column index of fetching object.");
    AddComment(R"DOC(
FetchV2 Operator.

It should not be configured by users directly.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
    fetch_v2, ops::FetchV2Op, ops::FetchV2OpProtoMaker,
    ops::FetchV2InferVarType,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL_FUNCTOR(fetch_v2, float, ops::FetchV2Kernel, double,
                               ops::FetchV2Kernel, int, ops::FetchV2Kernel,
                               int64_t, ops::FetchV2Kernel, bool,
                               ops::FetchV2Kernel, plat::float16,
                               ops::FetchV2Kernel);

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_ROCM)
REGISTER_OP_CUDA_KERNEL_FUNCTOR(fetch_v2, float, ops::FetchV2Kernel, double,
                                ops::FetchV2Kernel, int, ops::FetchV2Kernel,
                                int64_t, ops::FetchV2Kernel, bool,
                                ops::FetchV2Kernel, plat::float16,
                                ops::FetchV2Kernel);
#endif

#ifdef PADDLE_WITH_ASCEND_CL
REGISTER_OP_NPU_KERNEL_FUNCTOR(fetch_v2, float, ops::FetchV2Kernel, double,
                               ops::FetchV2Kernel, int, ops::FetchV2Kernel,
                               int64_t, ops::FetchV2Kernel, bool,
                               ops::FetchV2Kernel, plat::float16,
                               ops::FetchV2Kernel);
#endif