utils.py 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import typing
15 16 17 18 19

import paddle
from paddle.fluid import framework as framework


20
class PrimOption:
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
    def __init__(self):
        self.enable_prim = False

    def get_status(self):
        return self.enable_prim

    def set_status(self, flag):
        self.enable_prim = flag


prim_option = PrimOption()


@framework.static_only
def prim_enabled():
    """
37
    Note:
38
        **ONLY available in the static graph mode.**
39

40
    Shows whether the automatic differentiation mechanism based on
41
    automatic differential basic operators is ON. Defaults to OFF.
42

43 44 45 46 47 48 49 50 51
    Returns:
        flag(bool): Whether the automatic differentiation mechanism based on automatic differential basic operators is ON.

    Examples:

        .. code-block:: python

            import paddle
            from paddle.incubate.autograd import enable_prim, disable_prim, prim_enabled
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
            paddle.enable_static()
            enable_prim()

            print(prim_enabled()) # True

            disable_prim()

            print(prim_enabled()) # False
    """
    return prim_option.get_status()


@framework.static_only
def enable_prim():
    """
68
    Note:
69
        **ONLY available in the static graph mode.**
70

71
    Turns ON automatic differentiation mechanism based on automatic
72
    differential basic operators.
73

74 75 76 77 78 79
    Examples:

        .. code-block:: python

            import paddle
            from paddle.incubate.autograd import enable_prim, prim_enabled
80

81 82 83 84 85 86 87 88 89 90 91
            paddle.enable_static()
            enable_prim()

            print(prim_enabled()) # True
    """
    prim_option.set_status(True)


@framework.static_only
def disable_prim():
    """
92
    Note:
93
        **ONLY available in the static graph mode.**
94

95
    Turns OFF automatic differentiation mechanism based on automatic
96
    differential basic operators.
97

98 99 100 101 102 103
    Examples:

        .. code-block:: python

            import paddle
            from paddle.incubate.autograd import enable_prim, disable_prim, prim_enabled
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
            paddle.enable_static()
            enable_prim()

            print(prim_enabled()) # True

            disable_prim()

            print(prim_enabled()) # False
    """
    prim_option.set_status(False)


INT_DTYPE_2_STRING = {
    int(0): 'bool',
    int(1): 'int16',
    int(2): 'int32',
    int(3): 'int64',
    int(4): 'float16',
    int(5): 'float32',
    int(6): 'float64',
    int(20): 'uint8',
    int(21): 'int8',
    int(23): 'complex64',
    int(24): 'complex128',
}


def get_var_block(block, names):
    assert isinstance(names, list)
    if len(names) == 0:
        return None
    elif len(names) == 1:
        return block.var(names[0])
    else:
        return [block.var(name) for name in names]


def get_input_var_list(op):
    if op.input_names is None:
        return []
    else:
        return [
            get_var_block(op.block, op.input(n)) for n in sorted(op.input_names)
        ]


def get_output_var_list(op):
    if op.output_names is None:
        return []
    else:
        return [
            get_var_block(op.block, op.output(n))
            for n in sorted(op.output_names)
        ]


def flatten(inp):
    if inp is None or isinstance(inp, paddle.fluid.framework.Variable):
        return [inp]
    flattened = []
    for part in inp:
        flattened += flatten(part)
    return flattened


def flatten_and_remove_none(inp):
    flattened = flatten(inp)
    return [var for var in flattened if var is not None]
173 174 175 176


def as_tensors(xs):
    if isinstance(xs, framework.Variable):
177
        return (xs,)
178 179 180 181
    elif isinstance(xs, typing.Sequence):
        return tuple(xs)
    else:
        return xs