test_profiler.py 8.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
import os
17
import tempfile
18
import numpy as np
19
import paddle
20
import paddle.utils as utils
21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
25
import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
D
dangqingqing 已提交
26 27


28
class TestProfiler(unittest.TestCase):
29 30 31 32
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

33
    def build_program(self, compile_program=True):
34 35 36 37
        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
X
Xin Pan 已提交
38 39
            hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
            i = layers.zeros(shape=[1], dtype='int64')
40 41 42
            counter = fluid.layers.zeros(
                shape=[1], dtype='int64', force_cpu=True
            )
X
Xin Pan 已提交
43 44 45 46 47 48 49 50 51 52 53 54
            until = layers.fill_constant([1], dtype='int64', value=10)
            data_arr = layers.array_write(hidden1, i)
            cond = fluid.layers.less_than(x=counter, y=until)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
                layers.array_write(hidden_n, i, data_arr)
                fluid.layers.increment(x=counter, value=1, in_place=True)
                layers.less_than(x=counter, y=until, cond=cond)

            hidden_n = layers.array_read(data_arr, i)
            hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
55 56 57
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
58
            avg_cost = paddle.mean(cost)
F
fengjiayi 已提交
59
            batch_size = fluid.layers.create_tensor(dtype='int64')
60 61 62
            batch_acc = fluid.layers.accuracy(
                input=predict, label=label, total=batch_size
            )
63

64
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
65 66
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

67
        if compile_program:
68 69 70 71
            # TODO(luotao): profiler tool may have bug with multi-thread parallel executor.
            # https://github.com/PaddlePaddle/Paddle/pull/25200#issuecomment-650483092
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_threads = 1
72
            train_program = fluid.compiler.CompiledProgram(
73 74 75 76
                main_program
            ).with_data_parallel(
                loss_name=avg_cost.name, exec_strategy=exec_strategy
            )
77 78 79 80 81 82 83 84 85 86
        else:
            train_program = main_program
        return train_program, startup_program, avg_cost, batch_size, batch_acc

    def get_profile_path(self):
        profile_path = os.path.join(tempfile.gettempdir(), "profile")
        open(profile_path, "w").write("")
        return profile_path

    def check_profile_result(self, profile_path):
87
        data = open(profile_path, 'rb').read()
88
        if len(data) > 0:
89 90 91 92 93 94
            profile_pb = profiler_pb2.Profile()
            profile_pb.ParseFromString(data)
            self.assertGreater(len(profile_pb.events), 0)
            for event in profile_pb.events:
                if event.type == profiler_pb2.Event.GPUKernel:
                    if not event.detail_info and not event.name.startswith(
95 96
                        "MEM"
                    ):
97 98
                        raise Exception(
                            "Kernel %s missing event. Has this kernel been recorded by RecordEvent?"
99 100
                            % event.name
                        )
101
                elif event.type == profiler_pb2.Event.CPU and (
102 103 104
                    event.name.startswith("Driver API")
                    or event.name.startswith("Runtime API")
                ):
105
                    print("Warning: unregister", event.name)
106

T
Tao Luo 已提交
107
    def run_iter(self, exe, main_program, fetch_list):
108 109
        x = np.random.random((32, 784)).astype("float32")
        y = np.random.randint(0, 10, (32, 1)).astype("int64")
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        outs = exe.run(
            main_program, feed={'x': x, 'y': y}, fetch_list=fetch_list
        )

    def net_profiler(
        self,
        exe,
        state,
        tracer_option,
        batch_range=None,
        use_parallel_executor=False,
        use_new_api=False,
    ):
        (
            main_program,
            startup_program,
            avg_cost,
            batch_size,
            batch_acc,
        ) = self.build_program(compile_program=use_parallel_executor)
130 131 132 133 134 135 136 137
        exe.run(startup_program)

        profile_path = self.get_profile_path()
        if not use_new_api:
            with profiler.profiler(state, 'total', profile_path, tracer_option):
                for iter in range(10):
                    if iter == 2:
                        profiler.reset_profiler()
138 139 140
                    self.run_iter(
                        exe, main_program, [avg_cost, batch_acc, batch_size]
                    )
141
        else:
142 143 144 145 146
            options = utils.ProfilerOptions(
                options={
                    'state': state,
                    'sorted_key': 'total',
                    'tracer_level': tracer_option,
147 148 149 150 151 152
                    'batch_range': [0, 10]
                    if batch_range is None
                    else batch_range,
                    'profile_path': profile_path,
                }
            )
153 154
            with utils.Profiler(enabled=True, options=options) as prof:
                for iter in range(10):
155 156 157
                    self.run_iter(
                        exe, main_program, [avg_cost, batch_acc, batch_size]
                    )
158 159 160
                    utils.get_profiler().record_step()
                    if batch_range is None and iter == 2:
                        utils.get_profiler().reset()
161 162 163
        # TODO(luotao): check why nccl kernel in profile result.
        # https://github.com/PaddlePaddle/Paddle/pull/25200#issuecomment-650483092
        # self.check_profile_result(profile_path)
164

D
dangqingqing 已提交
165
    def test_cpu_profiler(self):
166 167
        exe = fluid.Executor(fluid.CPUPlace())
        for use_new_api in [False, True]:
168 169 170 171 172 173 174 175 176 177 178
            self.net_profiler(
                exe,
                'CPU',
                "Default",
                batch_range=[5, 10],
                use_new_api=use_new_api,
            )

    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "profiler is enabled only with GPU"
    )
D
dangqingqing 已提交
179
    def test_cuda_profiler(self):
180 181
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
182 183 184 185 186 187 188 189 190 191 192
            self.net_profiler(
                exe,
                'GPU',
                "OpDetail",
                batch_range=[0, 10],
                use_new_api=use_new_api,
            )

    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "profiler is enabled only with GPU"
    )
193
    def test_all_profiler(self):
194 195
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
196 197 198 199 200 201 202
            self.net_profiler(
                exe,
                'All',
                "AllOpDetail",
                batch_range=None,
                use_new_api=use_new_api,
            )
203 204 205 206 207


class TestProfilerAPIError(unittest.TestCase):
    def test_errors(self):
        options = utils.ProfilerOptions()
208 209
        self.assertIsNone(options['profile_path'])
        self.assertIsNone(options['timeline_path'])
210 211 212 213 214 215 216 217 218 219 220 221

        options = options.with_state('All')
        self.assertTrue(options['state'] == 'All')
        try:
            print(options['test'])
        except ValueError:
            pass

        global_profiler = utils.get_profiler()
        with utils.Profiler(enabled=True) as prof:
            self.assertTrue(utils.get_profiler() == prof)
            self.assertTrue(global_profiler != prof)
222

D
dangqingqing 已提交
223

224
if __name__ == '__main__':
225
    paddle.enable_static()
226
    unittest.main()