elementwise_mul_op.cc 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include <memory>
S
sneaxiy 已提交
17
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19
#include "paddle/fluid/platform/complex.h"
S
sneaxiy 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename T>
struct SameDimsElemwiseMul<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VMUL(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseMul<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x * eigen_y;
  }
};

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
class ElementwiseMulOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Mul"; }
  std::string GetEquation() const override { return "Out = X \\\\odot Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Multiply two tensors element-wise";
  }
};

H
hong 已提交
74 75
template <typename T>
class ElementwiseMulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
76
 public:
H
hong 已提交
77
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
78 79

 protected:
80
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
81
    op->SetType("elementwise_mul_grad");
H
hong 已提交
82 83 84 85 86 87
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetAttrMap(this->Attrs());
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
S
sneaxiy 已提交
88 89 90
  }
};

H
hong 已提交
91 92
template <typename T>
class ElementwiseMulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
93
 public:
H
hong 已提交
94
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
95 96

 protected:
97
  void Apply(GradOpPtr<T> op) const override {
98
    op->SetType("elementwise_mul_grad_grad");
H
hong 已提交
99 100 101 102 103
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
104

H
hong 已提交
105
    op->SetAttrMap(this->Attrs());
106

H
hong 已提交
107 108 109
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
110 111 112
  }
};

S
sneaxiy 已提交
113 114 115
}  // namespace operators
}  // namespace paddle

116
namespace ops = paddle::operators;
117
REGISTER_OPERATOR(elementwise_mul, ops::ElementwiseMulOp,
S
sneaxiy 已提交
118
                  ops::ElementwiseMulOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
119 120 121 122 123 124 125
                  ops::ElementwiseMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseMulOpGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elementwise_mul_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseMulDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseMulDoubleGradMaker<paddle::imperative::OpBase>);

126
REGISTER_OPERATOR(elementwise_mul_grad_grad, ops::ElementwiseOpDoubleGrad,
127
                  ops::ElementwiseDoubleGradOpInplaceInferer);
S
sneaxiy 已提交
128

129 130
REGISTER_OP_CPU_KERNEL(
    elementwise_mul,
Q
QI JUN 已提交
131 132 133
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int>,
134 135
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext,
136
                              paddle::platform::complex<float>>,
137
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext,
138
                              paddle::platform::complex<double>>);
139 140
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad,
Q
QI JUN 已提交
141 142 143
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int>,
144 145
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext,
146
                                  paddle::platform::complex<float>>,
147
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext,
148
                                  paddle::platform::complex<double>>);
149 150 151 152 153 154 155 156 157
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
158 159
                                        int64_t>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
160
                                        paddle::platform::complex<float>>,
161
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
162
                                        paddle::platform::complex<double>>);
163 164 165 166 167 168 169 170 171

REGISTER_OP_VERSION(elementwise_mul)
    .AddCheckpoint(
        R"ROC(Register elementwise_mul for adding the attribute of Scale_y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_y",
            "In order to support the function of scaling the input Y when "
            "using the operator of elementwise_mul.",
            1.0f));