pooling.py 85.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16 17
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
18
from ...fluid.data_feeder import check_type, check_variable_and_dtype
19
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
20
from paddle import in_dynamic_mode
21 22
from paddle.fluid.framework import _in_legacy_dygraph, Variable
from paddle.fluid.framework import in_dygraph_mode, _non_static_mode
23

24 25
__all__ = []

26

27 28 29 30 31
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
32
    if len(x.shape) != dimension:
33 34
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
35 36 37
                dimension, len(x.shape), type(x)
            )
        )
38 39


40
def _check_instance(x, x_name, types=(int, float)):
41 42

    if not isinstance(x, types):
43 44
        raise ValueError(
            "Excepted {} type for {} but received type: {}. ".format(
45 46 47
                types, x_name, type(x)
            )
        )
48 49


D
Double_V 已提交
50 51 52 53
def _check_value_limitation(x, x_name, min_limit=1e-3):
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
54 55 56 57
                "Excepted the input {} to be greater than {} but received x: {}. ".format(
                    x_name, min_limit, x
                )
            )
D
Double_V 已提交
58 59 60 61 62

    for ele in x:
        _check_value(ele, x_name)


63 64 65
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
66
    else:
67
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
68 69


70 71 72 73
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
74 75


76 77 78 79 80
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
81 82
                "Attr(data_format): %s" % str(data_format)
            )
83 84 85 86 87 88
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
89 90
                "Attr(data_format): %s" % str(data_format)
            )
91 92 93 94 95 96
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
97 98
                "Attr(data_format): %s" % str(data_format)
            )
99 100
        else:
            return True if data_format == "NDHWC" else False
101 102


103 104 105 106 107
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
108 109 110 111
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
112
        if padding == "VALID":
113
            if ceil_mode is not False:
114
                raise ValueError(
115
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
116 117
                    "Received ceil_mode: True."
                )
118 119 120 121 122 123 124 125 126 127 128 129

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
130
                raise ValueError(
131
                    "Non-zero padding({}) in the batch or channel dimensions "
132 133
                    "is not supported.".format(padding)
                )
134
            padding_algorithm = "EXPLICIT"
135
            padding = _exclude_padding_in_batch_and_channel(
136 137
                padding, channel_last
            )
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
153
    else:
154 155 156 157
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

158

159
def _expand_low_nd_padding(padding):
160
    # 1d to 2d fake input
161 162 163 164 165 166
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
167 168 169 170
            "The size of padding's dimmention should be 1 or 2. But got padding={}".format(
                padding
            )
        )
171 172 173
    return padding


174 175 176 177 178 179 180 181 182
def avg_pool1d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    exclusive=True,
    ceil_mode=False,
    name=None,
):
D
Double_V 已提交
183
    """
184 185
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
186 187 188 189

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
190
                          `L` is the length of the feature. The data type is float32 or float64.
191
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
192
            it must contain an integer.
193
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
194 195 196 197 198 199 200 201
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
202
        exclusive (bool): Whether to exclude padding points in average pooling
203
                          mode, default is `True`.
204
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
205
            If it is set to False, the floor function will be used. The default value is False.
206 207 208 209 210 211 212 213
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Examples:
        .. code-block:: python
214

C
Chen Long 已提交
215
            import paddle
216
            import paddle.nn as nn
C
Chen Long 已提交
217

218 219 220 221
            data = paddle.uniform([1, 3, 32], paddle.float32)
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
222 223 224
    """
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
225
    if not in_dynamic_mode():
226
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
227
    _check_input(x, 3)
228
    x = unsqueeze(x, [2])
229
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
230 231 232 233 234 235 236
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
237 238 239
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

240
    channel_last = _channel_last("NCL", 1)
241 242 243
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode
    )
244

245 246
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
247

248
    if in_dygraph_mode():
249 250 251 252 253 254 255 256 257 258 259 260 261 262
        output = _C_ops.pool2d(
            x,
            kernel_size,
            stride,
            padding,
            ceil_mode,
            exclusive,
            data_format,
            'avg',
            False,
            False,
            padding_algorithm,
            True,
        )
263 264 265
        return squeeze(output, [2])

    if _in_legacy_dygraph():
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        output = _legacy_C_ops.pool2d(
            x,
            'pooling_type',
            'avg',
            'ksize',
            kernel_size,
            'global_pooling',
            False,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'use_cudnn',
            True,
            'ceil_mode',
            ceil_mode,
            'use_mkldnn',
            False,
            'exclusive',
            exclusive,
            'data_format',
            data_format,
        )
291 292 293 294
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
295
    dtype = helper.input_dtype(input_param_name='x')
296 297
    pool_out = helper.create_variable_for_type_inference(dtype)

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
316 317 318 319

    return squeeze(pool_out, [2])


320 321 322 323 324 325 326 327 328 329 330
def avg_pool2d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    ceil_mode=False,
    exclusive=True,
    divisor_override=None,
    data_format="NCHW",
    name=None,
):
331
    """
332 333
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
334

335
    Args:
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
356
        exclusive (bool): Whether to exclude padding points in average pooling
357 358 359 360 361
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
362 363 364
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
365

366 367
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
368

369 370
    Examples:
        .. code-block:: python
371

C
Chen Long 已提交
372 373
            import paddle
            import paddle.nn.functional as F
374

C
Chen Long 已提交
375
            # avg pool2d
376
            x = paddle.uniform([1, 3, 32, 32], paddle.float32)
C
Chen Long 已提交
377 378 379 380
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
381
    """
382
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
383 384 385
    if stride is None:
        stride = kernel_size
    else:
386
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
387

D
Double_V 已提交
388 389 390
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

391
    channel_last = _channel_last(data_format, 2)
392 393 394
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode
    )
395

396
    if _non_static_mode():
F
From00 已提交
397
        if in_dygraph_mode():
398 399 400 401 402 403 404 405 406 407 408 409 410 411
            output = _C_ops.pool2d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                exclusive,
                data_format,
                'avg',
                False,
                False,
                padding_algorithm,
                True,
            )
F
From00 已提交
412
        else:
413
            output = _legacy_C_ops.pool2d(
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
                x,
                'pooling_type',
                'avg',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                exclusive,
                'data_format',
                data_format,
            )
438 439 440 441 442
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
443

444
    op_type = 'pool2d'
445
    helper = LayerHelper(op_type, **locals())
446
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
447
    dtype = helper.input_dtype(input_param_name='x')
448 449
    pool_out = helper.create_variable_for_type_inference(dtype)

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": "avg",
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
468

469 470 471 472 473
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
474 475


476 477 478 479 480 481 482 483 484 485 486
def avg_pool3d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    ceil_mode=False,
    exclusive=True,
    divisor_override=None,
    data_format="NCDHW",
    name=None,
):
487
    """
488 489
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
490 491

    Args:
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
510
        exclusive (bool): Whether to exclude padding points in average pooling
511 512 513 514 515
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
516
        name(str, optional): For detailed information, please refer
517 518
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
519

520
    Returns:
521
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
522

523 524
    Examples:
        .. code-block:: python
525

526
          import paddle
C
Chen Long 已提交
527

528
          x = paddle.uniform([1, 3, 32, 32, 32], paddle.float32)
529 530 531 532 533 534 535
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
536
    """
537 538 539 540 541
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
542

543
    channel_last = _channel_last(data_format, 3)
544 545 546
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode
    )
547

D
Double_V 已提交
548 549 550
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

551
    if in_dygraph_mode():
552 553 554 555 556 557 558 559 560 561 562 563 564 565
        pool_out = _C_ops.pool3d(
            x,
            kernel_size,
            stride,
            padding,
            ceil_mode,
            exclusive,
            data_format,
            'avg',
            False,
            False,
            padding_algorithm,
            True,
        )
566 567
    elif _in_legacy_dygraph():
        pool_out = _legacy_C_ops.pool3d(
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
            x,
            'pooling_type',
            'avg',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            'global_pooling',
            False,
            'padding_algorithm',
            padding_algorithm,
            'use_cudnn',
            True,
            'ceil_mode',
            ceil_mode,
            'use_mkldnn',
            False,
            'exclusive',
            exclusive,
            'data_format',
            data_format,
        )
592 593 594 595 596 597 598 599
    else:
        op_type = "pool3d"
        helper = LayerHelper(op_type, **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
        dtype = helper.input_dtype(input_param_name='x')
        pool_out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": pool_out}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        helper.append_op(
            type=op_type,
            inputs={"X": x},
            outputs=outputs,
            attrs={
                "pooling_type": 'avg',
                "ksize": kernel_size,
                "global_pooling": False,
                "strides": stride,
                "paddings": padding,
                "padding_algorithm": padding_algorithm,
                "use_cudnn": True,
                "ceil_mode": ceil_mode,
                "use_mkldnn": False,
                "exclusive": exclusive,
                "data_format": data_format,
            },
        )
618

619 620 621 622
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
623 624 625 626 627
        return (
            pool_out
            * (kernel_size[0] * kernel_size[1] * kernel_size[2])
            / divisor_override
        )
628 629


630 631 632 633 634 635 636 637 638
def max_pool1d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    return_mask=False,
    ceil_mode=False,
    name=None,
):
639
    """
640 641
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
642 643

    Args:
644 645 646
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
647
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
648
            it must contain an integer.
649
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
650 651 652 653 654 655 656 657
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
658
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
659 660
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
661 662 663 664 665
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
666

667 668
    Examples:
        .. code-block:: python
669

670 671
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
672

673
          data = paddle.uniform([1, 3, 32], paddle.float32)
674 675
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
676
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
677
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
678
    """
679 680
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
681
    if not in_dynamic_mode():
682
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
683 684 685
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
686 687 688
    if stride is None:
        stride = kernel_size
    else:
689
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
690

691 692 693
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode
    )
694

695 696
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
697

F
From00 已提交
698 699
    if in_dygraph_mode():
        if return_mask:
700 701 702 703 704 705 706 707
            pool_out = _C_ops.max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False
            )
            return (
                (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
                if return_mask
                else squeeze(pool_out[0], [2])
            )
F
From00 已提交
708
        else:
709 710 711 712 713 714 715 716 717 718 719 720 721 722
            pool_out = _C_ops.pool2d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                True,
                data_format,
                'max',
                False,
                False,
                padding_algorithm,
                True,
            )
F
From00 已提交
723 724 725
            return squeeze(pool_out, [2])

    if _in_legacy_dygraph():
726
        if return_mask:
727
            pool_out = _legacy_C_ops.max_pool2d_with_index(
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
                x,
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'strides',
                stride,
                'paddings',
                padding,
                'padding_algorithm',
                padding_algorithm,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
            return (
                (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
                if return_mask
                else squeeze(pool_out[0], [2])
            )
D
Double_V 已提交
755
        else:
756
            pool_out = _legacy_C_ops.pool2d(
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
D
Double_V 已提交
781 782
            return squeeze(pool_out, [2])

783
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
784
    helper = LayerHelper(op_type, **locals())
785
    dtype = helper.input_dtype(input_param_name='x')
786
    pool_out = helper.create_variable_for_type_inference(dtype)
787
    mask = helper.create_variable_for_type_inference('int32')
788 789
    outputs = {"Out": pool_out, "Mask": mask}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        },
    )

    return (
        (squeeze(pool_out, [2]), squeeze(mask, [2]))
        if return_mask
        else squeeze(pool_out, [2])
    )
814 815


816
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
817 818 819
    assert output_size is None or isinstance(output_size, (list, tuple)), (
        "Required output_size is None|list|tuple, but received %s" % output_size
    )
820 821 822
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
823 824 825 826 827
        default_size.append(
            (input_size[-len(kernel_size) + d] - 1) * stride[d]
            + kernel_size[d]
            - 2 * padding[d]
        )
828 829

    has_static_var = False
830
    if output_size is None:
831
        return default_size
832 833 834 835 836 837 838 839
    elif utils._contain_var(output_size):
        if not _non_static_mode():
            has_static_var = True
            output_size = utils._convert_to_tensor_list(output_size)
        else:
            for i, var in enumerate(output_size):
                if isinstance(var, Variable):
                    output_size[i] = var.numpy()[0]
840 841 842 843 844 845 846

    if len(output_size) == len(kernel_size) + 2:
        output_size = output_size[2:]
    if len(output_size) != len(kernel_size):
        raise ValueError(
            "output_size should be a sequence containing "
            "{} or {} elements, but it has a length of '{}'".format(
847 848 849
                len(kernel_size), len(kernel_size) + 2, len(output_size)
            )
        )
850 851 852 853 854 855
    if not has_static_var:
        for d in range(len(kernel_size)):
            min_size = default_size[d] - stride[d]
            max_size = default_size[d] + stride[d]
            if not (min_size < output_size[d] < max_size):
                raise ValueError(
856 857 858 859
                    'invalid output_size "{}" (dim {} must be between {} and {})'.format(
                        output_size, d, min_size, max_size
                    )
                )
860 861

    return output_size
862 863


864 865 866 867 868 869 870 871 872 873
def max_unpool1d(
    x,
    indices,
    kernel_size,
    stride=None,
    padding=0,
    data_format="NCL",
    output_size=None,
    name=None,
):
874
    r"""
875
    This API implements max unpooling 1d opereation.
876 877
    `max_unpool1d` accepts the output of `max_pool1d` as input,
    including the indices of the maximum value and calculate the partial inverse.
878 879 880 881
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
882

883 884 885 886 887 888 889 890
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
891
                          shape [N, C, L]. The format of input tensor is `"NCL"`,
892 893 894
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
895
                          shape [N, C, L]. The format of input tensor is `"NCL"` ,
896 897 898 899 900 901 902
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
903
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
904 905 906 907 908 909 910 911 912 913
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
914
        Tensor: The output tensor of unpooling result.
915 916 917

    Examples:
        .. code-block:: python
918

919 920 921 922 923 924 925 926 927 928 929 930
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
931 932 933 934
        raise ValueError(
            "Attr(data_format) should be 'NCL'. Received "
            "Attr(data_format): %s." % str(data_format)
        )
935 936 937 938 939 940 941 942 943 944 945 946
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

947 948 949
    output_size = _unpool_output_size(
        x, kernel_size, stride, padding, output_size
    )
950

X
xiaoting 已提交
951
    if in_dygraph_mode():
952 953 954
        output = _C_ops.unpool(
            x, indices, kernel_size, stride, padding, output_size, data_format
        )
X
xiaoting 已提交
955 956
        return squeeze(output, [2])
    elif in_dynamic_mode():
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
        output = _legacy_C_ops.unpool(
            x,
            indices,
            'unpooling_type',
            'max',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            "output_size",
            output_size,
            "data_format",
            data_format,
        )
973 974 975 976 977 978 979
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

980 981 982 983 984 985 986 987 988 989 990 991
    helper.append_op(
        type=op_type,
        inputs={"X": x, "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size,
        },
    )
992 993 994
    return squeeze(unpool_out, [2])


995 996 997 998 999 1000 1001 1002 1003 1004
def max_unpool2d(
    x,
    indices,
    kernel_size,
    stride=None,
    padding=0,
    data_format="NCHW",
    output_size=None,
    name=None,
):
1005
    r"""
1006
    This API implements max unpooling 2d opereation.
1007
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
1008

1009 1010

    Args:
1011
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
1012
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`,
1013
                          where `N` is batch size, `C` is the number of channels,
1014 1015
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
1016
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
1017
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` ,
1018 1019 1020 1021 1022 1023 1024 1025
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
1026
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1027 1028
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
1029 1030 1031
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
1046
            Tensor: The output tensor of unpooling result.
1047 1048 1049 1050

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
1051

1052 1053 1054

        Examples:
            .. code-block:: python
1055

C
Chen Long 已提交
1056 1057
            import paddle
            import paddle.nn.functional as F
1058

1059
            data = paddle.rand(shape=[1,1,6,6])
1060 1061 1062 1063 1064
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

1065
            # specify a different output size than input size
1066
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
1067
            # unpool_out shape: [1, 1, 7, 7]
1068

1069 1070
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1071 1072 1073 1074 1075 1076 1077
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
1078 1079 1080 1081
        raise ValueError(
            "Attr(data_format) should be 'NCHW'. Received "
            "Attr(data_format): %s." % str(data_format)
        )
1082

1083 1084 1085
    output_size = _unpool_output_size(
        x, kernel_size, stride, padding, output_size
    )
1086

X
xiaoting 已提交
1087
    if in_dygraph_mode():
1088 1089 1090
        output = _C_ops.unpool(
            x, indices, kernel_size, stride, padding, output_size, data_format
        )
1091
        return output
X
xiaoting 已提交
1092
    elif in_dynamic_mode():
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
        output = _legacy_C_ops.unpool(
            x,
            indices,
            'unpooling_type',
            'max',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            "output_size",
            output_size,
            "data_format",
            data_format,
        )
1109 1110 1111 1112 1113 1114 1115
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    helper.append_op(
        type=op_type,
        inputs={"X": x, "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size,
        },
    )
1128 1129 1130
    return unpool_out


1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
def max_unpool3d(
    x,
    indices,
    kernel_size,
    stride=None,
    padding=0,
    data_format="NCDHW",
    output_size=None,
    name=None,
):
1141
    r"""
1142
    This API implements max unpooling 3d opereation.
1143 1144
    `max_unpool3d` accepts the output of `max_pool3d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1145 1146 1147 1148
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
1164
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`,
1165
                          where `N` is batch size, `C` is the number of channels, `D` is
1166
                          the depth of the feature, `H` is the height of the feature,
1167 1168
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
1169
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` ,
1170
                          where `N` is batch size, `C` is the number of channels, `D` is
1171
                          the depth of the feature, `H` is the height of the feature,
1172 1173 1174 1175 1176 1177
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
1178
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
1189
        Tensor: The output tensor of unpooling result.
1190 1191 1192

    Examples:
        .. code-block:: python
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
1212 1213 1214 1215
        raise ValueError(
            "Attr(data_format) should be 'NCDHW'. Received "
            "Attr(data_format): %s." % str(data_format)
        )
1216

1217 1218 1219
    output_size = _unpool_output_size(
        x, kernel_size, stride, padding, output_size
    )
1220

X
xiaoting 已提交
1221
    if in_dygraph_mode():
1222 1223 1224
        output = _C_ops.unpool3d(
            x, indices, kernel_size, stride, padding, output_size, data_format
        )
1225
        return output
X
xiaoting 已提交
1226
    elif in_dynamic_mode():
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        output = _legacy_C_ops.unpool3d(
            x,
            indices,
            'unpooling_type',
            'max',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            "output_size",
            output_size,
            "data_format",
            data_format,
        )
1243 1244 1245 1246 1247 1248 1249
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    helper.append_op(
        type=op_type,
        inputs={"X": x, "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size,
        },
    )
1262 1263 1264
    return unpool_out


1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
def max_pool2d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    return_mask=False,
    ceil_mode=False,
    data_format="NCHW",
    name=None,
):
W
Wei Shengyu 已提交
1275 1276 1277
    """
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
W
Wei Shengyu 已提交
1278

W
Wei Shengyu 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Examples:
        .. code-block:: python
W
Wei Shengyu 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

          import paddle
          import paddle.nn.functional as F

          # max pool2d
          x = paddle.uniform([1, 3, 32, 32], paddle.float32)
          out = F.max_pool2d(x, kernel_size=2, stride=2, padding=0)
          # output.shape [1, 3, 16, 16]
          # for return_mask=True
          out, max_indices = F.max_pool2d(x, kernel_size=2, stride=2, padding=0, return_mask=True)
          # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
W
Wei Shengyu 已提交
1322
    """
W
Wei Shengyu 已提交
1323

1324
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1325 1326 1327 1328 1329 1330 1331 1332
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1333 1334
            "Attr(data_format): %s." % str(data_format)
        )
1335 1336 1337

    channel_last = True if data_format == "NHWC" else False

1338 1339 1340
    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode
    )
1341

1342
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1343
        raise ValueError(
1344
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1345 1346
        )

F
From00 已提交
1347 1348
    if in_dygraph_mode():
        if return_mask:
1349 1350 1351
            output = _C_ops.max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False
            )
F
From00 已提交
1352 1353
            return output if return_mask else output[0]
        else:
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
            return _C_ops.pool2d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                True,
                data_format,
                'max',
                False,
                False,
                padding_algorithm,
                True,
            )
F
From00 已提交
1368 1369

    if _in_legacy_dygraph():
1370
        if return_mask:
1371
            output = _legacy_C_ops.max_pool2d_with_index(
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
                x,
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'strides',
                stride,
                'paddings',
                padding,
                'padding_algorithm',
                padding_algorithm,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
1394
            return output if return_mask else output[0]
D
Double_V 已提交
1395
        else:
1396
            output = _legacy_C_ops.pool2d(
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
D
Double_V 已提交
1421
            return output
1422

1423
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1424
    helper = LayerHelper(op_type, **locals())
1425 1426 1427
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'max_pool2d'
    )
1428
    dtype = helper.input_dtype(input_param_name='x')
1429
    pool_out = helper.create_variable_for_type_inference(dtype)
1430
    mask = helper.create_variable_for_type_inference("int32")
1431
    outputs = {"Out": pool_out, "Mask": mask}
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        },
    )
1451

1452
    return (pool_out, mask) if return_mask else pool_out
1453 1454


1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
def max_pool3d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    return_mask=False,
    ceil_mode=False,
    data_format="NCDHW",
    name=None,
):
1465
    """
1466 1467
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
W
Wei Shengyu 已提交
1468

1469 1470
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1471
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1472
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1473
            is a tuple or list, it must contain three integers,
1474
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1475
            Otherwise, the pool kernel size will be the cube of an int.
1476 1477
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1478
            Otherwise, the pool stride size will be a cube of an int.
1479 1480 1481 1482 1483 1484 1485
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1486
        ceil_mode (bool): ${ceil_mode_comment}
1487
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1488 1489 1490 1491 1492 1493
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1494

1495 1496
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
W
Wei Shengyu 已提交
1497

1498 1499
    Examples:
        .. code-block:: python
1500

W
Wei Shengyu 已提交
1501 1502
          import paddle
          import paddle.nn.functional as F
1503

W
Wei Shengyu 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
          # max pool3d
          x = paddle.uniform([1, 3, 32, 32, 32])
          output = F.max_pool3d(x,
                                kernel_size=2,
                                stride=2, padding=0)
          # output.shape [1, 3, 16, 16, 16]
          # for return_mask=True
          x = paddle.uniform([1, 3, 32, 32, 32])
          output, max_indices = paddle.nn.functional.max_pool3d(x,
                                                                kernel_size=2,
                                                                stride=2,
                                                                padding=0,
                                                                return_mask=True)

          # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16]
1519
    """
W
Wei Shengyu 已提交
1520

1521 1522 1523 1524 1525 1526
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1527
    channel_last = _channel_last(data_format, 3)
1528

1529 1530 1531
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode
    )
1532

1533
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1534
        raise ValueError(
1535
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1536 1537
        )

F
From00 已提交
1538 1539
    if in_dygraph_mode():
        if return_mask:
1540 1541 1542
            output = _C_ops.max_pool3d_with_index(
                x, kernel_size, stride, padding, False, False
            )
F
From00 已提交
1543 1544
            return output if return_mask else output[0]
        else:
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
            return _C_ops.pool3d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                True,
                data_format,
                'max',
                False,
                False,
                padding_algorithm,
                True,
            )
F
From00 已提交
1559 1560

    if _in_legacy_dygraph():
1561
        if return_mask:
1562
            output = _legacy_C_ops.max_pool3d_with_index(
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'strides',
                stride,
                'paddings',
                padding,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
1587
            return output if return_mask else output[0]
D
Double_V 已提交
1588
        else:
1589
            output = _legacy_C_ops.pool3d(
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
D
Double_V 已提交
1614
            return output
1615

1616
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1617
    helper = LayerHelper(op_type, **locals())
1618
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1619
    dtype = helper.input_dtype(input_param_name='x')
1620
    pool_out = helper.create_variable_for_type_inference(dtype)
1621
    mask = helper.create_variable_for_type_inference('int32')
1622 1623
    outputs = {"Out": pool_out, "Mask": mask}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        },
    )
1642

1643
    return (pool_out, mask) if return_mask else pool_out
1644 1645


1646
def adaptive_avg_pool1d(x, output_size, name=None):
1647
    """
1648 1649
    Adaptive average pooling 1d operation on :attr:`x` according to :attr:`output_size`.

1650 1651
    Notes:
        See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1652

1653
    Args:
1654 1655 1656
        x (Tensor): The input Tensor of pooling, which is a 3-D tensor with shape :math:`[N, C, L]`, where :math:`N` is batch size, :math:`C` is the number of channels and :math:`L` is the length of the feature. The data type is float32 or float64.
        output_size (int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1657

1658
    Returns:
1659
        Tensor: The result of 1D adaptive average pooling. Its data type is same as input.
1660

1661 1662
    Examples:
        .. code-block:: python
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
            #
            import paddle
            import paddle.nn.functional as F

            data = paddle.uniform([1, 3, 32])
            pool_out = F.adaptive_avg_pool1d(data, output_size=16)
            # pool_out shape: [1, 3, 16])
1682 1683
    """
    pool_type = 'avg'
Z
zhiboniu 已提交
1684
    if not in_dynamic_mode():
1685 1686 1687
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'adaptive_pool2d'
        )
1688
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1689 1690
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1691

1692
    x = unsqueeze(x, [2])
1693
    if in_dygraph_mode():
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
        pool_out = _C_ops.pool2d(
            x,
            pool_size,
            [1, 1],
            [0, 0],
            False,
            True,
            "NCHW",
            pool_type,
            False,
            True,
            "EXPLICIT",
            False,
        )
1708 1709
        return squeeze(pool_out, [2])
    if _in_legacy_dygraph():
1710 1711 1712
        pool_out = _legacy_C_ops.pool2d(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True
        )
1713
        return squeeze(pool_out, [2])
1714

1715 1716
    l_type = "pool2d"

1717
    helper = LayerHelper(l_type, **locals())
1718
    dtype = helper.input_dtype(input_param_name='x')
1719 1720
    pool_out = helper.create_variable_for_type_inference(dtype)

1721
    outputs = {"Out": pool_out}
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        },
    )
1732

1733
    return squeeze(pool_out, [2])
1734 1735


1736
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
1737
    r"""
1738 1739
    Applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
1740

1741 1742 1743 1744 1745 1746 1747
    For avg adaptive pool2d:
    ..  math::
        hstart &= floor(i * H_{in} / H_{out})
        hend &= ceil((i + 1) * H_{in} / H_{out})
        wstart &= floor(j * W_{in} / W_{out})
        wend &= ceil((j + 1) * W_{in} / W_{out})
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
1748 1749 1750

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1751
                          The data type can be float32 or float64.
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
1763

1764 1765
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1766

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
1783

1784
            x = paddle.rand([2, 3, 32, 32])
1785
            # x.shape is [2, 3, 32, 32]
1786
            out = paddle.nn.functional.adaptive_avg_pool2d(
1787 1788
                            x = x,
                            output_size=[3, 3])
1789
            # out.shape is [2, 3, 3, 3]
1790
    """
Z
zhiboniu 已提交
1791
    if not in_dynamic_mode():
1792 1793 1794
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'adaptive_avg_pool2d'
        )
1795
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1796 1797 1798 1799

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1800 1801
            "Attr(data_format): %s." % str(data_format)
        )
1802 1803 1804 1805 1806 1807 1808 1809 1810

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1811
        output_size = list(output_size)
1812
        if output_size[0] is None:
1813
            output_size[0] = in_h
1814
        if output_size[1] is None:
1815 1816
            output_size[1] = in_w

1817 1818 1819 1820 1821 1822 1823 1824 1825
    if _non_static_mode():
        output_size = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in output_size
        ]
    # output_size support Variable in static mode
    elif utils._contain_var(output_size):
        output_size = utils._convert_to_tensor_list(output_size)

F
From00 已提交
1826
    if in_dygraph_mode():
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
        return _C_ops.pool2d(
            x,
            output_size,
            [1, 1],
            [0, 0],
            False,
            True,
            data_format,
            'avg',
            False,
            True,
            "EXPLICIT",
            False,
        )
F
From00 已提交
1841 1842

    if _in_legacy_dygraph():
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        return _legacy_C_ops.pool2d(
            x,
            'pooling_type',
            'avg',
            'ksize',
            output_size,
            'global_pooling',
            False,
            'adaptive',
            True,
            'data_format',
            data_format,
        )
1856 1857 1858 1859

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1860
    dtype = helper.input_dtype(input_param_name='x')
1861 1862 1863 1864
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        },
    )
1876 1877 1878 1879 1880

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
1881
    r"""
1882 1883
    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
    For avg adaptive pool3d:
    ..  math::
        dstart &= floor(i * D_{in} / D_{out})
        dend &= ceil((i + 1) * D_{in} / D_{out})
        hstart &= floor(j * H_{in} / H_{out})
        hend &= ceil((j + 1) * H_{in} / H_{out})
        wstart &= floor(k * W_{in} / W_{out})
        wend &= ceil((k + 1) * W_{in} / W_{out})
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
1895 1896 1897

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1898
                          The data type can be float32, float64.
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
1910

1911 1912
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1913

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
1933 1934

            input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1935
            out = paddle.nn.functional.adaptive_avg_pool3d(
1936
                            x = input_data,
1937
                            output_size=[3, 3, 3])
1938
            # out.shape is [2, 3, 3, 3, 3]
1939
    """
Z
zhiboniu 已提交
1940
    if not in_dynamic_mode():
1941 1942 1943
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_avg_pool3d'
        )
1944
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1945 1946 1947 1948

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1949 1950
            "Attr(data_format): %s." % str(data_format)
        )
1951 1952 1953 1954 1955 1956 1957 1958 1959

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1960
        output_size = list(output_size)
1961
        if output_size[0] is None:
1962
            output_size[0] = in_l
1963
        if output_size[1] is None:
1964
            output_size[1] = in_h
1965
        if output_size[2] is None:
1966 1967
            output_size[2] = in_w

1968
    if in_dygraph_mode():
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
        return _C_ops.pool3d(
            x,
            output_size,
            [1, 1, 1],
            [0, 0, 0],
            False,
            True,
            data_format,
            'avg',
            False,
            True,
            "EXPLICIT",
            False,
        )
1983
    elif _in_legacy_dygraph():
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
        return _legacy_C_ops.pool3d(
            x,
            'pooling_type',
            'avg',
            'ksize',
            output_size,
            'global_pooling',
            False,
            'adaptive',
            True,
            'data_format',
            data_format,
        )
1997 1998 1999 2000

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
2001
    dtype = helper.input_dtype(input_param_name='x')
2002 2003 2004
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        },
    )
2016 2017

    return pool_out
2018 2019


2020
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
2021 2022 2023 2024 2025 2026 2027 2028 2029
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
2030
        output_size (int): The pool kernel size. The value should be an integer.
2031
        return_mask (bool): If true, the index of max pooling point will be returned along
2032 2033 2034 2035 2036 2037 2038
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
2039

2040 2041
    Examples:
        .. code-block:: python
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
2057

2058
              data = paddle.uniform([1, 3, 32], paddle.float32)
2059 2060
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
2061
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
2062 2063 2064
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
Z
zhiboniu 已提交
2065
    if not in_dynamic_mode():
2066 2067 2068
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_max_pool1d'
        )
2069 2070
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
2071 2072 2073 2074 2075
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
2076
    if in_dygraph_mode():
2077 2078 2079 2080 2081 2082 2083 2084
        pool_out = _C_ops.max_pool2d_with_index(
            x, pool_size, [1, 1], [0, 0], False, True
        )
        return (
            (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
            if return_mask
            else squeeze(pool_out[0], [2])
        )
2085
    if _in_legacy_dygraph():
2086 2087 2088 2089 2090 2091 2092 2093
        pool_out = _legacy_C_ops.max_pool2d_with_index(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True
        )
        return (
            (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
            if return_mask
            else squeeze(pool_out[0], [2])
        )
2094

2095 2096
    l_type = 'max_pool2d_with_index'

2097
    helper = LayerHelper(l_type, **locals())
2098
    dtype = helper.input_dtype(input_param_name='x')
2099 2100
    pool_out = helper.create_variable_for_type_inference(dtype)

2101
    mask = helper.create_variable_for_type_inference('int32')
2102 2103
    outputs = {"Out": pool_out, "Mask": mask}

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        },
    )
2114

2115 2116 2117 2118 2119
    return (
        (squeeze(pool_out, [2]), squeeze(mask, [2]))
        if return_mask
        else squeeze(pool_out, [2])
    )
2120 2121


2122
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
2123
    """
2124 2125
    This operation applies a 2D adaptive max pooling on input tensor.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
2126

2127 2128 2129 2130 2131
    Args:
        x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
        return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
2132

2133 2134
    Returns:
        Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
2135

2136 2137
    Examples:
        .. code-block:: python
2138

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
          # max adaptive pool2d
          # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
          # of input data into m*n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle
2155

2156 2157 2158 2159 2160
          input_data = paddle.randn(shape=(2, 3, 32, 32))
          out = paddle.nn.functional.adaptive_max_pool2d(
                        x = input_data,
                        output_size=[3, 3])
          # out.shape is [2, 3, 3, 3]
2161
    """
Z
zhiboniu 已提交
2162
    if not in_dynamic_mode():
2163 2164 2165
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_max_pool2d'
        )
2166
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
2167
        # check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
2168 2169 2170 2171 2172 2173
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
2174
        output_size = list(output_size)
2175
        if output_size[0] is None:
2176
            output_size[0] = in_h
2177
        if output_size[1] is None:
2178
            output_size[1] = in_w
2179
    if in_dygraph_mode():
2180 2181 2182
        pool_out = _C_ops.max_pool2d_with_index(
            x, output_size, [1, 1], [0, 0], False, True
        )
2183 2184
        return pool_out if return_mask else pool_out[0]
    if _in_legacy_dygraph():
2185 2186 2187
        pool_out = _legacy_C_ops.max_pool2d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True
        )
2188
        return pool_out if return_mask else pool_out[0]
2189 2190 2191 2192

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
2193
    dtype = helper.input_dtype(input_param_name='x')
2194 2195
    pool_out = helper.create_variable_for_type_inference(dtype)

2196
    mask = helper.create_variable_for_type_inference('int32')
2197 2198
    outputs = {"Out": pool_out, "Mask": mask}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        },
    )
    # return (pool_out, mask) if return_mask else pool_out
2210 2211 2212
    return pool_out


2213
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
2214
    """
2215 2216
    This operation applies a 3D adaptive max pooling on input tensor.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
2217

2218 2219 2220 2221 2222
    Args:
        x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
        return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
2223

2224 2225
    Returns:
        Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
2226

2227 2228
    Examples:
        .. code-block:: python
2229

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
          # adaptive max pool3d
          # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
          # of input data into m*n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(i * H / m)
          #                 hend = ceil((i + 1) * H / m)
          #                 wstart = floor(i * W / n)
          #                 wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
          #
          import paddle
2249

2250 2251 2252 2253 2254
          input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
          out = paddle.nn.functional.adaptive_max_pool3d(
                        x = input_data,
                        output_size=[3, 3, 3])
          # out.shape is [2, 3, 3, 3, 3]
2255 2256
    """

Z
zhiboniu 已提交
2257
    if not in_dynamic_mode():
2258 2259 2260
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_max_pool3d'
        )
2261
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
2262
        # check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
2263 2264 2265 2266 2267 2268
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
2269
        output_size = list(output_size)
2270
        if output_size[0] is None:
2271
            output_size[0] = in_l
2272
        if output_size[1] is None:
2273
            output_size[1] = in_h
2274
        if output_size[2] is None:
2275 2276
            output_size[2] = in_w

Z
zhiboniu 已提交
2277
    if in_dynamic_mode():
2278 2279
        if in_dygraph_mode():
            # By default, strides is [1,1,1] and paddings is [0, 0, 0]
2280 2281 2282
            pool_out = _C_ops.max_pool3d_with_index(
                x, output_size, [1, 1, 1], [0, 0, 0], False, True
            )
2283 2284
        elif _in_legacy_dygraph():
            pool_out = _legacy_C_ops.max_pool3d_with_index(
2285 2286
                x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True
            )
2287
        return pool_out if return_mask else pool_out[0]
2288 2289 2290 2291

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
2292
    dtype = helper.input_dtype(input_param_name='x')
2293 2294
    pool_out = helper.create_variable_for_type_inference(dtype)

2295
    mask = helper.create_variable_for_type_inference('int32')
2296 2297
    outputs = {"Out": pool_out, "Mask": mask}

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        },
    )
2308

2309
    return (pool_out, mask) if return_mask else pool_out