conv.py 70.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

L
LielinJiang 已提交
15
from ...device import get_cudnn_version
16
from ...static import Variable
17 18 19 20 21 22
from ...fluid.layers.utils import (
    convert_to_list,
    _is_symmetric_padding,
    _contain_var,
    _convert_to_tensor_list,
)
23
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
24
from ...fluid.layer_helper import LayerHelper
25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...fluid.layers import nn
27
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
28 29
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
64 65 66 67
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
68 69 70 71 72 73 74 75 76 77 78 79 80 81
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
82 83
                    "is not supported.".format(padding)
                )
84
            padding_algorithm = "EXPLICIT"
85
            padding = _exclude_padding_in_batch_and_channel(
86 87
                padding, channel_last
            )
88
            if _is_symmetric_padding(padding, num_dims):
89 90 91 92
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
93 94
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
95 96 97 98
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
99
            padding = convert_to_list(padding, num_dims, 'padding')
100 101 102 103 104
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
105
        padding = convert_to_list(padding, num_dims, 'padding')
106 107
    if not all([p >= 0 for p in padding]):
        raise ValueError(
108 109 110 111
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
112 113 114
    return padding, padding_algorithm


115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
131

132
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
133
    if in_dygraph_mode() and op_type == "conv2d":
134 135 136 137 138 139 140
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            dilation,
141
            groups,
142 143
            data_format,
        )
H
hong 已提交
144
        if bias is not None:
145 146 147
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
148 149 150 151
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
152
            if len(bias.shape) < len(x.shape):
153
                tmp_bias = _C_ops.reshape(
154 155 156 157 158
                    bias,
                    [1 for i in range(channel_dim)]
                    + bias.shape
                    + [1 for i in range(len(x.shape) - channel_dim - 1)],
                )
159
                return _C_ops.add(pre_bias, tmp_bias)
C
Chen Weihang 已提交
160
            else:
161
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
162 163
        else:
            return pre_bias
164 165

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
166 167 168 169 170 171 172 173 174 175 176
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
            use_cudnn,
        )
177
        if bias is not None:
178 179 180
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
181
            tmp_bias = _C_ops.reshape(
182 183 184 185 186
                bias,
                [1 for i in range(channel_dim)]
                + bias.shape
                + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
187
            return _C_ops.add(pre_bias, tmp_bias)
188 189 190 191
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
192 193 194 195 196 197 198 199 200 201
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
202
        if bias is not None:
203 204 205
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
206
            tmp_bias = _C_ops.reshape(
207
                bias,
208 209
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
210
            return _C_ops.add(pre_bias, tmp_bias)
211 212 213
        else:
            return pre_bias

Z
zhiboniu 已提交
214
    if in_dynamic_mode():
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
235
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
251
            "data_format": data_format,
L
LielinJiang 已提交
252
        }
253 254 255
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], op_type
        )
L
LielinJiang 已提交
256 257 258 259
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
260 261 262
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
263 264
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
265 266 267 268 269 270
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim, 'use_mkldnn': use_mkldnn},
            )
L
LielinJiang 已提交
271 272 273 274 275
        else:
            out = pre_bias
    return out


276 277 278 279 280 281 282 283 284 285 286
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
287
    r"""
W
whs 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
303
        Out = \sigma (W \ast X + b)
W
whs 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
330
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
331 332

    Args:
333
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
334 335
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
336
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
337
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
338
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
339
            contain one integers, (stride_size). Default: 1.
340
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
341 342 343 344 345 346
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
347
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
348 349 350 351 352 353
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
354
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
355 356 357
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
358 359
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
360 361 362
           None by default.

    Returns:
363
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
364 365 366 367 368 369 370
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
          x = paddle.to_tensor([[[4, 8, 1, 9],
                                 [7, 2, 0, 9],
                                 [6, 9, 2, 6]]], dtype="float32")
          w = paddle.to_tensor([[[9, 3, 4],
                                 [0, 0, 7],
                                 [2, 5, 6]],
                                [[0, 3, 4],
                                 [2, 9, 7],
                                 [5, 6, 8]]], dtype="float32")

          y = F.conv1d(x, w)
          print(y)
          # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[133., 238.],
          #          [160., 211.]]])
W
whs 已提交
387 388 389 390 391 392 393 394
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
395 396 397 398
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
399

400
    channel_last = data_format == "NLC"
W
whs 已提交
401 402
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
403 404
    if len(x.shape) != 3:
        raise ValueError(
405 406 407 408
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
409 410 411
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
412 413 414 415
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
416 417
    if groups <= 0:
        raise ValueError(
418 419 420 421
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
422 423 424 425
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
426 427
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
428 429 430 431
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
432 433
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
434 435 436

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
437

W
whs 已提交
438
    if len(padding) == 2:
439
        padding = [0] * 2 + padding
W
whs 已提交
440
    elif len(padding) == 1:
441
        padding = [0] + padding
W
whs 已提交
442 443
    else:
        raise ValueError(
444 445 446 447
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
448 449 450
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
451 452

    l_type = "conv2d"
453 454

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
455 456 457 458 459 460
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
461 462 463
        l_type = 'depthwise_conv2d'
        use_cudnn = False

464
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
465
    if is_compiled_with_npu():
466
        if num_channels == groups and num_channels == num_filters:
467 468 469 470
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

471
    squeeze_aixs = -3 if channel_last else -2
472
    x = unsqueeze(x, axis=[squeeze_aixs])
473

474
    if in_dygraph_mode():
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        if l_type == 'conv2d':
            out = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
                groups,
                conv2d_data_format,
            )
        else:
            out = getattr(_C_ops, l_type)(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                conv2d_data_format,
                False,
                -1,
                False,
                False,
                use_cudnn,
            )
502 503 504
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            False,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            conv2d_data_format,
        )
525
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
539
            "data_format": conv2d_data_format,
W
whs 已提交
540
        }
541 542 543
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
544
        helper = LayerHelper(l_type, **locals())
545
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
546 547
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
548 549 550
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
551 552
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
553
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
554 555 556
    return out


557 558 559 560 561 562 563 564 565 566 567
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
568
    r"""
S
swtkiwi 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

587
    ..  math::
588

589
        Out = \sigma (W \ast X + b)
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

614
        ..  math::
615

616 617
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
618 619

    Args:
620
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
621
            of input is float16 or float32 or float64.
622
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
623
            the number of output channels, g is the number of groups, kH is the filter's
624
            height, kW is the filter's width.
625
        bias (Tensor, optional): The bias with shape [M,].
626 627
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
628
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
629 630 631 632
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
633 634
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
635
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
636
            when `data_format` is `"NHWC"`, `padding` can be in the form
637 638
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
639
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
640 641
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
642
            Default: dilation = 1.
C
cnn 已提交
643
        groups (int): The groups number of the Conv2D Layer. According to grouped
644 645 646 647
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
648
        data_format (str, optional): Specify the data format of the input, and the data format of the output
649 650 651
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
652 653
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
654 655 656
           None by default.

    Returns:
657
        A Tensor representing the conv2d result, whose data type is the same with input.
658 659 660 661

    Examples:
        .. code-block:: python

662
          import paddle
663 664
          import paddle.nn.functional as F

665 666
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
667 668 669 670

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

671 672 673 674 675
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
676 677 678 679
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
680

681
    channel_last = data_format == "NHWC"
682
    channel_dim = -1 if channel_last else 1
683 684
    if len(x.shape) != 4:
        raise ValueError(
685 686 687 688
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
689
    num_channels = x.shape[channel_dim]
690 691
    num_filters = weight.shape[0]
    if num_channels < 0:
692 693 694 695
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
696 697
    if groups <= 0:
        raise ValueError(
698 699 700 701
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
702 703 704 705
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
706 707
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
708 709 710 711
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
712 713
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
714

715 716
    cudnn_version = get_cudnn_version()

717 718 719 720 721
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
722

723 724
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
725 726
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
727 728

    l_type = "conv2d"
729 730 731 732 733
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
734
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
735
        if is_compiled_with_rocm():
736 737 738
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
739 740
    else:
        if in_dygraph_mode():
741 742 743 744 745 746 747
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
748
                groups,
749 750
                data_format,
            )
H
hong 已提交
751 752 753 754 755 756 757
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
758

759
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
760
    if is_compiled_with_npu():
761
        if num_channels == groups and num_channels == num_filters:
762 763 764 765
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

766 767 768 769 770 771
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
772
        use_cudnn = False
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
805
    r"""
806 807 808 809 810 811 812 813 814 815 816 817 818 819
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
820
        Out = \sigma (W \ast X + b)
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
856
          and :math:`L^\prime_{out} + stride`.
857 858 859 860 861 862 863 864 865

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
866
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
867 868 869 870 871 872 873
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
874
             If it is a list/tuple, it must contain one integer. Default: 0.
875 876 877 878 879 880 881
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
882
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
883 884
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
885
            tuple/list, it must contain one integer, `(feature_length)`. None if use
886
            filter_size(shape of weight), padding, and stride to calculate output_size.
887
        data_format (str, optional): Specify the data format of the input, and the data format of the output
888 889 890
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
891 892
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
893 894 895 896 897 898 899 900 901 902 903 904 905
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
906

907
          # shape: (1, 2, 4)
908 909
          x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2,]]], dtype="float32")
910
          # shape: (2, 1, 2)
911 912 913 914 915 916 917
          w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

          y = F.conv1d_transpose(x, w)
          print(y)
          # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[60., 16., 99., 75., 4. ]]])
918 919 920 921 922 923 924 925 926 927 928
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
929 930 931 932
                data_format
            )
        )
    channel_last = data_format == "NLC"
933
    channel_dim = -1 if channel_last else 1
934 935
    if len(x.shape) != 3:
        raise ValueError(
936 937 938 939
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
940 941 942

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
943 944 945 946
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
947 948
    if groups <= 0:
        raise ValueError(
949 950 951 952
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
953 954 955 956
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
957 958
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
959 960 961 962 963 964 965 966 967 968

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
969 970 971 972
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
973

974 975
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
976 977 978 979

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
980
        if output_padding != 0:
981 982 983 984
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
985
        if isinstance(output_size, (list, tuple, int)):
986
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
987 988
        else:
            raise ValueError(
989 990
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
991 992 993 994

    if output_padding == 0:
        output_padding = []
    else:
995 996 997
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
998 999 1000 1001

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
1002
            "But got output_padding={} and stride={}".format(
1003 1004 1005
                output_padding[0], stride[0]
            )
        )
1006 1007 1008

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1009 1010 1011 1012 1013 1014
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1015 1016 1017 1018 1019 1020
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1021 1022
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1023

1024
    if in_dygraph_mode():
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1037 1038 1039
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            conv2d_data_format,
        )
1060
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1061 1062 1063 1064 1065
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1066
            'output_padding': output_padding,
1067 1068 1069 1070 1071 1072 1073
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1074
            'data_format': conv2d_data_format,
1075
        }
1076 1077 1078
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1079
        helper = LayerHelper(op_type, **locals())
1080
        dtype = helper.input_dtype(input_param_name='x')
1081 1082
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1083 1084 1085
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1086 1087 1088
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

1089
    out = squeeze(out, axis=[squeeze_axis])
1090 1091 1092
    return out


1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1106
    r"""
S
swtkiwi 已提交
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1119
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1120 1121 1122

    For each input :math:`X`, the equation is:

1123
    ..  math::
1124

1125
        Out = \sigma (W \ast X + b)
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1150
        ..  math::
1151 1152 1153 1154 1155 1156 1157

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1158 1159
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1160
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1161 1162 1163
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1164
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1165 1166

    Args:
L
LielinJiang 已提交
1167
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1168
            whose data type is float32 or float64.
L
LielinJiang 已提交
1169
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1170 1171
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1172
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1173 1174
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1175
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1176 1177
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1178
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1179
            it could be in three forms: `[pad_height, pad_width]` or
1180
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1181
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1182
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1183
            when `data_format` is `"NHWC"`, `padding` can be in the form
1184 1185
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1186 1187
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1188
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1189 1190 1191 1192 1193
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1194 1195
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1196
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1197
        output_size(int|tuple|list, optional): The output image size. If output size is a
1198
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1199
            filter_size(shape of weight), padding, and stride to calculate output_size.
1200
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1201 1202 1203
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1204 1205
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1206 1207 1208
           None by default.

    Returns:
1209
        A Tensor representing the conv2d_transpose, whose
1210 1211
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1212
        transposed convolution result.
1213 1214 1215 1216

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1217 1218
          import paddle
          import paddle.nn.functional as F
1219

1220 1221
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1222

1223
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1224
          y_np = y_var.numpy()
1225

1226
          print(y_np.shape)
1227 1228 1229 1230 1231 1232 1233
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1234 1235 1236 1237
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1238
    channel_dim = -1 if channel_last else 1
1239 1240
    if len(x.shape) != 4:
        raise ValueError(
1241 1242 1243 1244
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1245
    num_channels = x.shape[channel_dim]
1246
    if num_channels < 0:
1247 1248 1249 1250
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1251 1252
    if groups <= 0:
        raise ValueError(
1253 1254 1255 1256
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1257 1258 1259 1260
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1261 1262
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1263 1264 1265

    cudnn_version = get_cudnn_version()

1266 1267 1268 1269 1270
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1271 1272 1273

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1274 1275
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1276

1277 1278 1279
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1280
        if output_padding != 0:
1281 1282 1283 1284
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1285 1286 1287 1288 1289 1290
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1291
            output_size = convert_to_list(output_size, 2, 'output_size')
1292
        elif isinstance(output_size, Variable):
1293 1294 1295 1296 1297 1298 1299 1300 1301
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1302 1303 1304 1305
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1306 1307
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1308 1309
        else:
            raise ValueError(
1310 1311
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1312 1313 1314 1315

    if output_padding == 0:
        output_padding = []
    else:
1316
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1317 1318 1319

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1320
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1321
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1322
        use_cudnn = False
1323

F
From00 已提交
1324
    if in_dygraph_mode():
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1342 1343 1344 1345 1346 1347
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            data_format,
        )
1368
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1369
        if bias is not None:
L
LielinJiang 已提交
1370
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1371
        else:
L
LielinJiang 已提交
1372
            out = pre_bias
1373
    else:
L
LielinJiang 已提交
1374
        inputs = {'Input': [x], 'Filter': [weight]}
1375
        attrs = {
L
LielinJiang 已提交
1376
            'output_padding': output_padding,
1377 1378 1379 1380 1381 1382 1383
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1384
            'data_format': data_format,
1385
        }
1386 1387 1388
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1389
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1390
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1391
        outputs = {"Output": [pre_bias]}
1392 1393 1394
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1395

1396
        if bias is not None:
L
LielinJiang 已提交
1397
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1398
        else:
L
LielinJiang 已提交
1399 1400
            out = pre_bias

1401 1402 1403
    return out


1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1415
    r"""
S
swtkiwi 已提交
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1428
    ..  math::
1429

1430
        Out = \sigma (W \ast X + b)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1454
        ..  math::
1455 1456 1457 1458 1459 1460

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1461
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1462
            type of input is float16 or float32 or float64.
1463
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1464 1465
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1466
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1467 1468
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1469
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1470
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1471 1472 1473 1474
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1475
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1476
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1477
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1478 1479
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1480
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1481
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1482
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1483
            Default: dilation = 1.
1484
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1485 1486 1487 1488
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1489
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1490 1491 1492
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1493 1494
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1495 1496 1497
           None by default.

    Returns:
1498 1499 1500
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1501 1502 1503 1504 1505
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1506 1507
            import paddle
            import paddle.nn.functional as F
1508

1509 1510
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1511

1512 1513
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1514

1515
            print(y_np.shape)
1516 1517 1518 1519 1520 1521
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1522 1523
            "Attr(data_format): {}.".format(data_format)
        )
1524

1525
    channel_last = data_format == "NDHWC"
1526
    channel_dim = -1 if channel_last else 1
1527 1528
    if len(x.shape) != 5:
        raise ValueError(
1529 1530 1531 1532
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1533
    num_channels = x.shape[channel_dim]
1534 1535 1536
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1537
            "The channel dimension of the input({}) should be defined. "
1538 1539
            "Received: {}.".format(x.shape, num_channels)
        )
1540 1541
    if groups <= 0:
        raise ValueError(
1542 1543 1544 1545
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1546 1547 1548
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1549
            "Received: number of channels({}), groups({}).".format(
1550 1551 1552
                num_channels, groups
            )
        )
1553 1554 1555
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1556
            "Received: number of filters({}), groups({}).".format(
1557 1558 1559
                num_filters, groups
            )
        )
1560

1561
    cudnn_version = get_cudnn_version()
1562 1563 1564 1565 1566
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1567

1568
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1569 1570
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1571 1572
    op_type = "conv3d"

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1604
    r"""
L
LielinJiang 已提交
1605
    The convolution3d transpose layer calculates the output based on the input,
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1616
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1617 1618 1619

    For each input :math:`X`, the equation is:

1620
    ..  math::
1621

1622
        Out = \sigma (W \ast X + b)
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1647
        ..  math::
1648 1649 1650 1651 1652 1653 1654 1655 1656

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1657 1658
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1659 1660
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1661 1662 1663 1664
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1665
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1666 1667

    Args:
1668
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1669
            of input is float32 or float64.
L
LielinJiang 已提交
1670
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1671 1672
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1673
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1674 1675 1676
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1677
            Default: stride = 1.
1678
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1679 1680 1681
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1682
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1683
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1684
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1685
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1686 1687
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1688 1689
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1690
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1691 1692 1693 1694 1695
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1696 1697 1698
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1699
            Default: dilation = 1.
L
LielinJiang 已提交
1700
        output_size(int|list|tuple, optional): The output image size. If output size is a
1701
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1702
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1703
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1704 1705 1706
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1707 1708
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1709 1710 1711
           None by default.

    Returns:
1712
        A Tensor representing the conv3d_transpose, whose data
1713 1714 1715
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1716 1717 1718 1719
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1720

L
LielinJiang 已提交
1721
          import paddle
1722 1723
          import paddle.nn.functional as F

1724 1725
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1726

1727
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1728
          y_np = y_var.numpy()
1729

1730
          print(y_np.shape)
1731 1732 1733 1734 1735 1736
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1737 1738
            "Attr(data_format): {}.".format(data_format)
        )
1739

1740
    channel_last = data_format == "NDHWC"
1741
    channel_dim = -1 if channel_last else 1
1742 1743
    if len(x.shape) != 5:
        raise ValueError(
1744 1745 1746 1747
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1748
    num_channels = x.shape[channel_dim]
1749 1750 1751
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1752
            "The channel dimension of the input({}) should be defined. "
1753 1754
            "Received: {}.".format(x.shape, num_channels)
        )
1755 1756
    if groups <= 0:
        raise ValueError(
1757 1758 1759 1760
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1761 1762 1763
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1764
            "Received: number of channels({}), groups({}).".format(
1765 1766 1767
                num_channels, groups
            )
        )
1768 1769

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1770 1771
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1772 1773 1774
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1775
        if output_padding != 0:
1776 1777 1778 1779
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1780
        if isinstance(output_size, (list, tuple, int)):
1781
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1782 1783
        else:
            raise ValueError(
1784 1785
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1786 1787 1788 1789

    if output_padding == 0:
        output_padding = []
    else:
1790
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1791 1792 1793

    cudnn_version = get_cudnn_version()

1794 1795 1796 1797 1798 1799
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1800 1801 1802 1803

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1804
    if in_dygraph_mode():
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1817 1818 1819 1820 1821 1822
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'paddings',
            padding,
            "padding_algorithm",
            padding_algorithm,
            'strides',
            stride,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            "data_format",
            data_format_,
        )
1843
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1844
        if bias is not None:
L
LielinJiang 已提交
1845
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1846
        else:
L
LielinJiang 已提交
1847
            out = pre_bias
1848
    else:
L
LielinJiang 已提交
1849
        inputs = {'Input': [x], 'Filter': [weight]}
1850
        attrs = {
L
LielinJiang 已提交
1851
            'output_padding': output_padding,
1852 1853 1854 1855 1856 1857 1858
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1859
            "data_format": data_format_,
1860 1861
        }
        helper = LayerHelper(op_type, **locals())
1862 1863 1864
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1865

L
LielinJiang 已提交
1866
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1867 1868
        outputs = {"Output": [pre_bias]}

1869 1870 1871
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1872
        if bias is not None:
L
LielinJiang 已提交
1873
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1874
        else:
L
LielinJiang 已提交
1875
            out = pre_bias
1876 1877

    return out