nets.py 26.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
M
minqiyang 已提交
16
import six
17
from . import layers
18
from .data_feeder import check_variable_and_dtype, convert_dtype
F
Feiyu Chan 已提交
19
from ..utils import deprecated
F
fengjiayi 已提交
20

21 22 23
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
24
    "glu",
25
    "scaled_dot_product_attention",
Q
qiaolongfei 已提交
26
    "img_conv_group",
27
]
D
dzhwinter 已提交
28

F
fengjiayi 已提交
29 30 31

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
32
                         filter_size,
F
fengjiayi 已提交
33 34
                         pool_size,
                         pool_stride,
C
chengduoZH 已提交
35
                         pool_padding=0,
C
chengduoZH 已提交
36
                         pool_type='max',
C
chengduoZH 已提交
37 38 39 40 41 42 43 44
                         global_pooling=False,
                         conv_stride=1,
                         conv_padding=0,
                         conv_dilation=1,
                         conv_groups=1,
                         param_attr=None,
                         bias_attr=None,
                         act=None,
X
Xin Pan 已提交
45
                         use_cudnn=True):
46
    r"""
C
cnn 已提交
47
	:api_attr: Static Graph
S
swtkiwi 已提交
48

S
SunGaofeng 已提交
49
    The simple_img_conv_pool api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d` .
C
chengduoZH 已提交
50 51

    Args:
S
SunGaofeng 已提交
52 53
        input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
        num_filters(int): The number of filters. It is the same as the output channels.
C
chengduoZH 已提交
54 55 56
        filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
            the filter_size_H = filter_size_W = filter_size.
S
SunGaofeng 已提交
57
        pool_size (int|list|tuple): The pooling size of pool2d layer. If pool_size
C
chengduoZH 已提交
58 59
            is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
            Otherwise, the pool_size_H = pool_size_W = pool_size.
S
SunGaofeng 已提交
60
        pool_stride (int|list|tuple): The pooling stride of pool2d layer. If pool_stride
C
chengduoZH 已提交
61 62
            is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
            Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
S
SunGaofeng 已提交
63
        pool_padding (int|list|tuple): The padding of pool2d layer. If pool_padding is a list or
C
chengduoZH 已提交
64 65
            tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
            Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
S
SunGaofeng 已提交
66
        pool_type (str): Pooling type can be :math:`max` for max-pooling or :math:`avg` for
C
chengduoZH 已提交
67 68 69
            average-pooling. Default :math:`max`.
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            pool_size and pool_padding while be ignored. Default False
C
chengduo 已提交
70
        conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
C
chengduoZH 已提交
71 72
            list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
            the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
C
chengduo 已提交
73
        conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
C
chengduoZH 已提交
74 75
            a list or  tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
            Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
C
chengduo 已提交
76
        conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
C
chengduoZH 已提交
77 78
            a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
            Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
C
chengduo 已提交
79
        conv_groups (int): The groups number of the conv2d Layer. According to grouped
C
chengduoZH 已提交
80 81 82
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
            Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        act (str): Activation type for conv2d, if it is set to None, activation is not
            appended. Default: None.
C
chengduoZH 已提交
97 98 99 100
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
S
SunGaofeng 已提交
101 102 103 104
        4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
105 106 107 108

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
109
            import paddle.fluid as fluid
C
cnn 已提交
110 111
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
112
            img = fluid.data(name='img', shape=[100, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
113 114 115 116 117 118 119
            conv_pool = fluid.nets.simple_img_conv_pool(input=img,
                                                        filter_size=5,
                                                        num_filters=20,
                                                        pool_size=2,
                                                        pool_stride=2,
                                                        act="relu")
    """
F
fengjiayi 已提交
120 121 122 123
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
C
chengduoZH 已提交
124 125 126 127
        stride=conv_stride,
        padding=conv_padding,
        dilation=conv_dilation,
        groups=conv_groups,
F
fengjiayi 已提交
128
        param_attr=param_attr,
C
chengduoZH 已提交
129
        bias_attr=bias_attr,
C
chengduoZH 已提交
130
        act=act,
X
Xin Pan 已提交
131
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
132 133 134 135

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
136
        pool_type=pool_type,
C
chengduoZH 已提交
137
        pool_stride=pool_stride,
C
chengduoZH 已提交
138 139
        pool_padding=pool_padding,
        global_pooling=global_pooling,
X
Xin Pan 已提交
140
        use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
141 142 143 144 145 146 147 148 149
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
150
                   param_attr=None,
Q
Qiao Longfei 已提交
151
                   conv_with_batchnorm=False,
W
wanghaoshuang 已提交
152
                   conv_batchnorm_drop_rate=0.0,
Q
Qiao Longfei 已提交
153
                   pool_stride=1,
C
chengduoZH 已提交
154
                   pool_type="max",
X
Xin Pan 已提交
155
                   use_cudnn=True):
Q
Qiao Longfei 已提交
156
    """
C
cnn 已提交
157
	:api_attr: Static Graph
S
swtkiwi 已提交
158

C
chengduoZH 已提交
159
    The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
C
cnn 已提交
160
    and Pool2D. According to the input arguments, img_conv_group will do serials of
C
chengduoZH 已提交
161
    computation for Input using Convolution2d, BatchNorm, DropOut, and pass the last
C
cnn 已提交
162
    result to Pool2D.
C
chengduoZH 已提交
163 164

    Args:
L
lvmengsi 已提交
165
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float32 or float64.
C
chengduoZH 已提交
166
        conv_num_filter(list|tuple): Indicates the numbers of filter of this group.
C
cnn 已提交
167
        pool_size (int|list|tuple): The pooling size of Pool2D Layer. If pool_size
L
lvmengsi 已提交
168 169
            is a list or tuple, it must contain two integers, (pool_size_height, pool_size_width).
            Otherwise, the pool_size_height = pool_size_width = pool_size.
C
cnn 已提交
170
        conv_padding (int|list|tuple): The padding size of the Conv2D Layer. If padding is
C
chengduoZH 已提交
171
            a list or tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
172
            Otherwise the conv_padding of all Conv2D Layers are the same. Default 1.
C
chengduoZH 已提交
173 174
        conv_filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
175 176
            Otherwise the conv_filter_size of all Conv2D Layers are the same. Default 3.
        conv_act (str): Activation type for Conv2D Layer that is not followed by BatchNorm.
C
chengduoZH 已提交
177
            Default: None.
C
cnn 已提交
178 179
        param_attr (ParamAttr): The parameters to the Conv2D Layer. Default: None
        conv_with_batchnorm (bool|list): Indicates whether to use BatchNorm after Conv2D Layer.
C
chengduoZH 已提交
180 181
            If conv_with_batchnorm is a list, its length must be equal to the length of
            conv_num_filter. Otherwise, conv_with_batchnorm indicates whether all the
C
cnn 已提交
182
            Conv2D Layer follows a BatchNorm. Default False.
C
chengduoZH 已提交
183 184 185 186
        conv_batchnorm_drop_rate (float|list): Indicates the drop_rate of Dropout Layer
            after BatchNorm. If conv_batchnorm_drop_rate is a list, its length must be
            equal to the length of conv_num_filter. Otherwise, drop_rate of all Dropout
            Layers is conv_batchnorm_drop_rate. Default 0.0.
C
cnn 已提交
187
        pool_stride (int|list|tuple): The pooling stride of Pool2D layer. If pool_stride
C
chengduoZH 已提交
188 189 190 191 192 193 194 195 196
            is a list or tuple, it must contain two integers, (pooling_stride_H,
            pooling_stride_W). Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
            Default 1.
        pool_type (str): Pooling type can be :math:`max` for max-pooling and :math:`avg` for
            average-pooling. Default :math:`max`.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
197
        A Variable holding Tensor representing the final result after serial computation using Convolution2d,
C
cnn 已提交
198
        BatchNorm, DropOut, and Pool2D, whose data type is the same with input.
C
chengduoZH 已提交
199 200 201 202

    Examples:
        .. code-block:: python

203
            import paddle.fluid as fluid
C
cnn 已提交
204 205 206
            import paddle
            paddle.enable_static()
            
L
lvmengsi 已提交
207
            img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
208 209 210 211 212 213 214
            conv_pool = fluid.nets.img_conv_group(input=img,
                                                  conv_padding=1,
                                                  conv_num_filter=[3, 3],
                                                  conv_filter_size=3,
                                                  conv_act="relu",
                                                  pool_size=2,
                                                  pool_stride=2)
Q
Qiao Longfei 已提交
215 216 217
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
218
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
219 220 221 222 223

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
C
chengduoZH 已提交
224
            assert len(obj) == len(conv_num_filter)
Q
Qiao Longfei 已提交
225 226 227 228
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
229
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
230 231 232
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

M
minqiyang 已提交
233
    for i in six.moves.range(len(conv_num_filter)):
Q
Qiao Longfei 已提交
234 235 236 237 238 239 240 241 242
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
243
            param_attr=param_attr[i],
C
chengduoZH 已提交
244
            act=local_conv_act,
X
Xin Pan 已提交
245
            use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
246 247

        if conv_with_batchnorm[i]:
K
Kaipeng Deng 已提交
248
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
249 250
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
251
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
252 253 254 255 256

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
C
chengduoZH 已提交
257
        pool_stride=pool_stride,
X
Xin Pan 已提交
258
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
259
    return pool_out
D
dzhwinter 已提交
260 261 262 263 264


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
265
                       param_attr=None,
266
                       act="sigmoid",
267 268
                       pool_type="max",
                       bias_attr=None):
C
chengduoZH 已提交
269
    """
C
cnn 已提交
270
	:api_attr: Static Graph
S
swtkiwi 已提交
271

S
SunGaofeng 已提交
272 273 274 275 276
    **This api takes input as an LoDTensor. If input is a Tensor, please use** 
    :ref:`api_fluid_nets_simple_img_conv_pool` **instead**

    The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv` 
    and :ref:`api_fluid_layers_sequence_pool` .
C
chengduoZH 已提交
277 278

    Args:
S
SunGaofeng 已提交
279 280 281
        input (Variable): 2-D LoDTensor, the input of sequence_conv, 
            which supports variable-time length input sequence. 
            The underlying of input is a matrix with shape
C
chengduoZH 已提交
282
            (T, N), where T is the total time steps in this mini-batch and N is
S
SunGaofeng 已提交
283
            the input_hidden_size. The data type is float32 or float64.
C
chengduoZH 已提交
284 285
        num_filters(int): The number of filter.
        filter_size (int): The filter size.
S
SunGaofeng 已提交
286 287 288
        param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
        act (str|None): Activation type for Sequence_conv Layer. 
                        If set to None, no activation will be applied. Default: "sigmoid".
C
chengduoZH 已提交
289 290 291
        pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
            average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
            Default :math:`max`.
292 293 294 295 296
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
297

S
SunGaofeng 已提交
298 299 300 301 302 303
    Returns:
        The final result after sequence_conv and sequence_pool. 
        It is a 2-D Tensor, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
304 305 306 307

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
308
            import paddle.fluid as fluid
C
cnn 已提交
309 310
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
311
            input_dim = 100 #len(word_dict)
C
chengduoZH 已提交
312 313
            emb_dim = 128
            hid_dim = 512
S
SunGaofeng 已提交
314
            data = fluid.data(name="words", shape=[None, 1], dtype="int64", lod_level=1)
C
chengduoZH 已提交
315 316 317 318 319 320 321
            emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
            seq_conv = fluid.nets.sequence_conv_pool(input=emb,
                                                     num_filters=hid_dim,
                                                     filter_size=3,
                                                     act="tanh",
                                                     pool_type="sqrt")
    """
322 323

    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'input')
D
dzhwinter 已提交
324 325 326 327
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
328
        param_attr=param_attr,
329
        bias_attr=bias_attr,
330
        act=act)
D
dzhwinter 已提交
331

332
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
333
    return pool_out
G
guosheng 已提交
334 335


F
Feiyu Chan 已提交
336
@deprecated(since="2.0.0", update_to="paddle.nn.functional.glu")
G
guosheng 已提交
337
def glu(input, dim=-1):
338
    r"""
C
cnn 已提交
339
	:api_attr: Static Graph
S
swtkiwi 已提交
340

Y
Yibing Liu 已提交
341 342 343
    The Gated Linear Units(GLU) composed by :ref:`api_fluid_layers_split` , 
    :ref:`api_fluid_layers_sigmoid`  and :ref:`api_fluid_layers_elementwise_mul` . 
    Specifically, GLU will plit the input into two equal-sized parts,
C
chengduoZH 已提交
344
    :math:`a` and :math:`b`, along the given dimension and then compute as
G
guosheng 已提交
345
    following:
G
guosheng 已提交
346 347 348 349 350

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
351
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
352
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
353

G
guosheng 已提交
354
    Args:
Y
Yibing Liu 已提交
355 356 357 358
        input (Variable): The input variable which is a Tensor or LoDTensor. 
                          The supported data types include float32, float64 
                          and float16 (only for GPU).
        dim (int, optional): The dimension along which to split. If :math:`dim < 0`, the
C
chengduoZH 已提交
359
            dimension to split along is :math:`rank(input) + dim`. Default -1.
G
guosheng 已提交
360 361

    Returns:
Y
Yibing Liu 已提交
362
        Variable: Variable with half the size and same data type of input.
G
guosheng 已提交
363 364 365 366

    Examples:
        .. code-block:: python

367
            import paddle.fluid as fluid
C
cnn 已提交
368 369 370
            import paddle
            paddle.enable_static()
            
Y
Yibing Liu 已提交
371
            data = fluid.data(
Y
Yibing Liu 已提交
372 373 374
                name="words", shape=[-1, 6, 3, 9], dtype="float32")
            # shape of output: [-1, 3, 3, 9]
            output = fluid.nets.glu(input=data, dim=1)
G
guosheng 已提交
375
    """
376 377
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             "glu")
G
guosheng 已提交
378
    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
379 380
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
381
    return out
382 383


Y
ying 已提交
384 385 386
def scaled_dot_product_attention(queries,
                                 keys,
                                 values,
Y
ying 已提交
387
                                 num_heads=1,
Y
ying 已提交
388
                                 dropout_rate=0.):
389
    r"""
C
cnn 已提交
390
	:api_attr: Static Graph
S
swtkiwi 已提交
391

G
Guo Sheng 已提交
392
    This interface Multi-Head Attention using scaled dot product.
393
    Attention mechanism can be seen as mapping a query and a set of key-value
G
Guo Sheng 已提交
394 395 396
    pairs to an output. Multi-Head Attention performs attention using multi-head
    parallel, and the inputs of attention would be transformed by linear projection.
    The formula is as follows:
Y
ying 已提交
397

G
Guo Sheng 已提交
398
    .. math::
399

G
Guo Sheng 已提交
400 401 402
        MultiHead(Q, K, V ) & = Concat(head_1, ..., head_h)

        where \  head_i & = Attention(QW_i^Q , KW_i^K , VW_i^V )
403

G
Guo Sheng 已提交
404
        Attention(Q, K, V) & = softmax (\\frac{QK^\mathrm{T}}{\sqrt{d_k}}) V
405

G
Guo Sheng 已提交
406 407 408 409 410 411
    For more details, please refer to `Attention Is All You Need
    <https://arxiv.org/pdf/1706.03762.pdf>`_ .

    Note that the implementation is adapted to batch, and all matrix multiplication
    in :math:`Attention(Q, K, V)` is batched matrix multiplication. Refer to
    :ref:`api_fluid_layers_matmul` .
412

Y
ying 已提交
413
    Args:
G
Guo Sheng 已提交
414 415 416 417 418 419 420 421 422 423 424 425
        queries (Variable): A 3-D Tensor with shape :math:`[N, L_q, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_q` for the sequence length
            of query, :math:`d_k \\times h` for the feature size of query, :math:`h` for
            head number. The data type should be float32 or float64.
        keys (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_k \\times h` for the feature size of key, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        values (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_v \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_v \\times h` for the feature size of value, :math:`h` for head
            number. The data type should be the same as ``queries`` .
T
tianshuo78520a 已提交
426
        num_heads (int, optional): Indicate the number of head. If the number
G
Guo Sheng 已提交
427 428 429
            is 1, linear projection would not be performed on inputs. Default: 1.
        dropout_rate (float, optional): The rate to drop the attention weight.
            Default: 0.0, which means no dropout.
430 431

    Returns:
G
Guo Sheng 已提交
432 433 434 435 436
        Variable: A 3-D Tensor with shape :math:`[N, L_q, d_v \\times h]` , \
            where :math:`N` stands for batch size, :math:`L_q` for the sequence \
            length of query, :math:`d_v \\times h` for the feature size of value. \
            It has the same data type with inputs, representing the output of \
            Multi-Head Attention.
437

Y
ying 已提交
438
    Raises:
439
        TypeError: The dtype of inputs keys, values and queries should be the same.
T
tianshuo78520a 已提交
440
        ValueError: Inputs queries, keys and values should all be 3-D tensors.
G
Guo Sheng 已提交
441
        ValueError: The hidden size of queries and keys should be the same.
442
        ValueError: The max sequence length in value batch and in key batch should be the same.
G
Guo Sheng 已提交
443 444
        ValueError: he hidden size of keys must be divisible by the number of attention heads.
        ValueError: he hidden size of values must be divisible by the number of attention heads.
Y
ying 已提交
445

446 447 448
    Examples:
        .. code-block:: python

449
            import paddle.fluid as fluid
C
cnn 已提交
450 451 452
            import paddle
            paddle.enable_static()
            
G
Guo Sheng 已提交
453 454 455
            queries = fluid.data(name="queries", shape=[3, 5, 9], dtype="float32")
            keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
            values = fluid.data(name="values", shape=[3, 6, 10], dtype="float32")
C
chengduoZH 已提交
456
            contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
Y
ying 已提交
457
            contexts.shape  # [3, 5, 10]
458
    """
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    check_variable_and_dtype(queries, 'queries', ['float32', 'float64'],
                             "scaled_dot_product_attention")
    check_variable_and_dtype(keys, 'keys', ['float32', 'float64'],
                             "scaled_dot_product_attention")
    check_variable_and_dtype(values, 'values', ['float32', 'float64'],
                             "scaled_dot_product_attention")

    if not (queries.dtype == keys.dtype == values.dtype):
        raise TypeError(
            "The dtype of keys, values and queries should be the same."
            "But received queries.dtype = %s, "
            " keys.dtype = %s, values.dtype) = %s." %
            (convert_dtype(queries.dtype), convert_dtype(keys.dtype),
             convert_dtype(values.dtype)))

Y
ying 已提交
474 475
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
476 477 478 479
            "Inputs queries, keys and values should all be 3-D tensors."
            "But received len(queries.shape) = %d, "
            "len(keys.shape) = %d, len(values.shape) = %d." %
            (len(queries.shape), len(keys.shape), len(values.shape)))
Y
ying 已提交
480 481 482

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
483 484 485
            "The hidden size of queries and keys should be the same."
            "But received queries' hidden size = %d and keys' hidden size = %d."
            % (queries.shape[-1], keys.shape[-1]))
Y
ying 已提交
486 487
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
488 489 490
            "The max sequence length in value batch and in key batch "
            "should be the same. But received max sequence length in value batch "
            "= %d, in key batch = %d." % (values.shape[-2], keys.shape[-2]))
Y
ying 已提交
491 492 493 494 495 496 497 498 499
    if keys.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of keys (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (keys.shape[-1], num_heads))
    if values.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of values (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (values.shape[-1], num_heads))

Y
ying 已提交
500
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
517 518 519 520 521 522 523 524
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
525 526
    def __split_heads(x, num_heads):
        """
T
tianshuo78520a 已提交
527
        Reshape the last dimension of input tensor x so that it becomes two
Y
ying 已提交
528 529 530
        dimensions.

        Args:
Y
ying 已提交
531 532
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
533 534

        Returns:
Y
ying 已提交
535 536
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
537
        """
Y
ying 已提交
538 539
        if num_heads == 1:
            return x
540

Y
ying 已提交
541
        hidden_size = x.shape[-1]
542 543 544
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
Y
ying 已提交
545
        reshaped = layers.reshape(
546 547
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads])
548

T
tianshuo78520a 已提交
549
        # permute the dimensions into:
550 551 552 553
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
Y
ying 已提交
554
        """
T
tianshuo78520a 已提交
555
        Reshape the last two dimensions of input tensor x so that it becomes
Y
ying 已提交
556 557 558 559 560 561 562 563 564 565 566
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

Y
ying 已提交
567
        if len(x.shape) == 3: return x
568 569 570
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

Y
ying 已提交
571
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
Y
ying 已提交
572
        return layers.reshape(
573
            x=trans_x,
574 575 576 577 578
            shape=list(
                map(int, [
                    trans_x.shape[0], trans_x.shape[1], trans_x.shape[2] *
                    trans_x.shape[3]
                ])))
579

Y
ying 已提交
580 581 582 583 584
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
585 586

    key_dim_per_head = keys.shape[-1] // num_heads
587
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
588
    product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
Y
ying 已提交
589

Y
ying 已提交
590
    weights = layers.reshape(
591
        x=layers.reshape(
Y
ying 已提交
592
            x=product, shape=[-1, product.shape[-1]], act="softmax"),
593
        shape=product.shape)
Y
ying 已提交
594
    if dropout_rate:
G
guosheng 已提交
595 596
        weights = layers.dropout(
            weights, dropout_prob=dropout_rate, is_test=False)
Y
ying 已提交
597 598
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)