initializer.py 44.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
from . import framework
19
from . import core
20
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph, default_main_program, _current_expected_place
21
import numpy as np
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
25
from paddle import _C_ops
26

27
__all__ = [
28
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
29 30
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
31
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
32
]
33

34 35 36
_global_weight_initializer_ = None
_global_bias_initializer_ = None

37 38 39 40 41 42 43 44 45 46

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
47
    def __init__(self):
48 49
        pass

50
    def __call__(self, param, block=None):
51 52 53 54
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

55 56
    def _check_block(self, block):
        if block is None:
57
            block = default_main_program().global_block()
58 59 60

        return block

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

96 97 98

class ConstantInitializer(Initializer):
    """Implements the constant initializer
99 100

    Args:
D
Double_V 已提交
101
        value (float32): constant value to initialize the variable 
102 103 104 105

    Examples:
        .. code-block:: python

106 107 108
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
109
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
110 111 112 113
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
114

115 116
    """

117
    def __init__(self, value=0.0, force_cpu=False):
118 119 120
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
121
        self._force_cpu = force_cpu
122

123 124
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
125 126

        Args:
127 128 129
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
130 131

        Returns:
132
            The initialization op
133
        """
134 135
        block = self._check_block(block)

136 137
        assert (isinstance(var, framework.Variable) or
                isinstance(var, framework.EagerParamBase))
138
        assert isinstance(block, framework.Block)
139

J
Jiabin Yang 已提交
140
        if framework._non_static_mode():
141 142 143 144 145
            _C_ops.fill_constant(var, 'value',
                                 float(self._value), 'force_cpu',
                                 self._force_cpu, 'dtype',
                                 int(var.dtype), 'str_value',
                                 str(float(self._value)), 'shape', var.shape)
146 147 148 149 150
            return None
        else:
            # fill constant should set the "str_value" to preserve precision
            op = block.append_op(
                type="fill_constant",
151
                outputs={"Out": var},
152 153
                attrs={
                    "shape": var.shape,
154
                    "dtype": int(var.dtype),
155 156 157 158 159
                    "value": float(self._value),
                    'str_value': str(float(self._value)),
                    'force_cpu': self._force_cpu
                },
                stop_gradient=True)
160

161
            var.op = op
162
            return op
163 164 165


class UniformInitializer(Initializer):
166
    """Implements the random uniform distribution initializer
167 168 169 170 171

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
172 173 174 175 176 177
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
178 179 180 181

    Examples:
        .. code-block:: python

X
xiaoting 已提交
182
            import paddle.fluid as fluid
183
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
184
            fc = fluid.layers.fc(input=x, size=10,
185
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
186 187
    """

188 189 190 191 192 193 194
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
195 196
        assert low is not None
        assert high is not None
197
        assert high >= low
198
        assert seed is not None
199 200 201 202 203
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
204 205 206 207
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
208 209 210
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
211

212 213
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
214 215

        Args:
216 217 218
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
219 220

        Returns:
221
            The initialization op
222
        """
223 224
        block = self._check_block(block)

225
        assert isinstance(block, framework.Block)
226 227
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
228 229
                                 "uniform_random")

D
dzhwinter 已提交
230 231
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
232

X
polish  
Xin Pan 已提交
233
        # to be compatible of fp16 initializers
234
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
235 236
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
237 238
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
239 240 241 242 243 244 245 246
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
247
        if framework._non_static_mode():
248 249 250 251 252 253 254
            out_var = _C_ops.uniform_random(
                'shape', var.shape, 'min', self._low, 'max', self._high, 'seed',
                self._seed, 'dtype', out_dtype, 'diag_num', self._diag_num,
                'diag_step', self._diag_step, 'diag_val', self._diag_val)
            if var.dtype == VarDesc.VarType.FP16:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
255
                var_tmp._share_underline_tensor_to(var)
256
            else:
257
                out_var._share_underline_tensor_to(var)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            return None
        else:
            op = block.append_op(
                type="uniform_random",
                inputs={},
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "min": self._low,
                    "max": self._high,
                    "seed": self._seed,
                    "diag_num": self._diag_num,
                    "diag_step": self._diag_step,
                    "diag_val": self._diag_val
                },
                stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
W
Wu Yi 已提交
283

284
            var.op = op
285
            return op
286 287 288


class NormalInitializer(Initializer):
289 290 291 292 293 294 295 296 297 298
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
299
            import paddle.fluid as fluid
300
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
301 302
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
303

304 305 306 307 308 309 310 311 312 313 314
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

315 316
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
317 318

        Args:
319 320 321
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
322 323

        Returns:
324
            The initialization op
325
        """
326 327
        block = self._check_block(block)

328
        assert isinstance(block, framework.Block)
329

330 331
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
332
                                 "guassian_random")
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347
        # to be compatible of fp16 initalizers
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['normal_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

D
dzhwinter 已提交
348 349
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        if in_dygraph_mode():
            place = _current_expected_place()
            out_var = _C_ops.final_state_gaussian_random(
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                place)
            out_var._share_underline_tensor_to(var)

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
366
            out_var = _C_ops.gaussian_random(
367
                'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
368
                'std', self._std_dev, 'seed', self._seed, 'use_mkldnn', False)
369 370 371 372 373 374 375

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
376 377 378 379
            return None
        else:
            op = block.append_op(
                type="gaussian_random",
380
                outputs={"Out": out_var},
381 382
                attrs={
                    "shape": var.shape,
383
                    "dtype": out_dtype,
384 385 386 387 388 389 390
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed,
                    "use_mkldnn": False
                },
                stop_gradient=True)

391 392 393 394 395 396 397
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
398
            var.op = op
399
            return op
400 401


402 403 404 405 406 407 408 409 410 411 412
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
413
            import paddle.fluid as fluid
414
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
415 416 417 418 419 420 421 422
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
423
        super(TruncatedNormalInitializer, self).__init__()
424 425 426 427
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

428 429
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
430 431

        Args:
432 433 434
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
435 436

        Returns:
437
            The initialization op
438
        """
439 440
        block = self._check_block(block)

441 442
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
443

444 445
        if self._seed == 0:
            self._seed = block.program.random_seed
446 447

        # to be compatible of fp16 initalizers
448
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
449 450 451
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
452
                    ['truncated_gaussian_random', var.name, 'tmp'])),
453 454 455 456 457 458 459 460
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

461 462 463 464 465 466 467 468 469 470 471 472
        if in_dygraph_mode():
            out_var = _C_ops.final_state_truncated_gaussian_random(
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                _current_expected_place())
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
473 474 475 476 477 478
            out_var = _C_ops.truncated_gaussian_random(
                'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed)
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
479
                var_tmp._share_underline_tensor_to(var)
480
            else:
481
                out_var._share_underline_tensor_to(var)
482 483 484 485 486 487 488 489 490 491 492 493 494
            return None
        else:
            op = block.append_op(
                type="truncated_gaussian_random",
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed
                },
                stop_gradient=True)
495

496 497 498 499 500 501 502
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
503
            var.op = op
504
            return op
505 506


507
class XavierInitializer(Initializer):
508
    r"""
509
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
510 511 512
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
513 514 515

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
516 517 518 519 520 521
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

522
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
523
    is
524

Q
qiaolongfei 已提交
525
    .. math::
526

Q
qiaolongfei 已提交
527
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
528 529


Q
qiaolongfei 已提交
530
    Args:
X
xiaoting 已提交
531 532
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
533
                inferred from the variable.
X
xiaoting 已提交
534
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
535 536 537 538 539 540 541 542 543
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
544
            import paddle.fluid as fluid
X
xiaoting 已提交
545
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
546 547 548 549 550 551 552
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
553 554 555 556 557 558 559 560
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

561 562
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
563 564

        Args:
565 566 567
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
568 569

        Returns:
570
            The initialization op
571
        """
572 573
        block = self._check_block(block)

574
        assert isinstance(block, framework.Block)
575 576
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
577 578
                                 "xavier_init")

579 580 581 582 583 584
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
585 586 587
        if self._seed == 0:
            self._seed = block.program.random_seed

588
        # to be compatible of fp16 initalizers
589 590
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
591 592 593 594 595 596 597 598 599 600 601 602
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
603
        if framework._non_static_mode():
604
            if self._uniform:
605
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
606
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
607 608 609
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype', out_dtype)
            else:
610
                std = math.sqrt(2.0 / float(fan_in + fan_out))
611 612 613 614 615 616 617 618 619

                if in_dygraph_mode():
                    place = _current_expected_place()
                    out_var = _C_ops.final_state_gaussian_random(
                        out_var.shape, 0.0, std, self._seed, out_dtype, place)
                else:
                    out_var = _C_ops.gaussian_random(
                        'shape', out_var.shape, 'dtype', out_dtype, 'mean', 0.0,
                        'std', std, 'seed', self._seed)
620 621 622 623 624

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
625
                var_tmp._share_underline_tensor_to(var)
626
            else:
627
                out_var._share_underline_tensor_to(var)
628
            return None
629
        else:
630
            if self._uniform:
631
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
632 633 634 635 636 637 638 639 640 641 642 643 644
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed
                    },
                    stop_gradient=True)
            else:
645
                std = math.sqrt(2.0 / float(fan_in + fan_out))
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
666

667
            var.op = op
668
            return op
669 670 671


class MSRAInitializer(Initializer):
672
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
673 674

    This class implements the weight initialization from the paper
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
694 695 696
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
697 698 699 700 701 702

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
703

704
            import paddle
X
xsrobin 已提交
705
            import paddle.fluid as fluid
706
            paddle.enable_static()
D
Double_V 已提交
707
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
708 709
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
710

711 712 713 714 715 716 717 718 719 720 721 722
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

723 724
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
725 726

        Args:
727 728 729
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
730 731

        Returns:
732
            The initialization op
733
        """
734 735
        block = self._check_block(block)

736 737 738 739 740 741 742
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
743 744 745
        if self._seed == 0:
            self._seed = block.program.random_seed

746
        # to be compatible of fp16 initalizers
747 748
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
749 750 751 752 753 754 755 756 757 758 759 760
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
761
        if framework._non_static_mode():
762
            if self._uniform:
763
                limit = math.sqrt(6.0 / float(fan_in))
764 765 766 767 768
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype',
                                                int(out_dtype))
            else:
769
                std = math.sqrt(2.0 / float(fan_in))
770 771 772 773 774 775 776 777 778
                if in_dygraph_mode():
                    place = _current_expected_place()
                    out_var = _C_ops.final_state_gaussian_random(
                        out_var.shape, 0.0, std, self._seed, out_dtype, place)
                else:
                    out_var = _C_ops.gaussian_random(
                        'shape', out_var.shape, 'dtype',
                        int(out_dtype), 'mean', 0.0, 'std', std, 'seed',
                        self._seed)
779 780 781 782 783

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
784
                var_tmp._share_underline_tensor_to(var)
785
            else:
786
                out_var._share_underline_tensor_to(var)
787
            return None
788
        else:
789
            if self._uniform:
790
                limit = math.sqrt(6.0 / float(fan_in))
791 792 793 794 795 796 797 798 799 800 801 802 803 804
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            else:
805
                std = math.sqrt(2.0 / float(fan_in))
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
826

827
            var.op = op
828
            return op
829 830


831
class BilinearInitializer(Initializer):
832
    """
833 834 835
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
836 837 838 839 840

    Examples:

        .. code-block:: python

841
            import math
842 843 844 845 846

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
847 848
            factor = 2
            C = 2
D
Double_V 已提交
849 850
            B = 8
            H = W = 32
851 852 853 854
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
855
            conv_up = nn.Conv2DTranspose(3,
856 857 858 859 860 861 862 863 864 865 866
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
867 868 869 870
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
871 872
    interpolation unchanged during training.

873 874 875 876 877 878 879
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

880 881
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
882 883

        Args:
884 885 886
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
887 888

        Returns:
889
            The initialization op
890
        """
891 892
        block = self._check_block(block)

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

917
        # to be compatible of fp16 initalizers
918 919 920
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
921 922 923 924 925 926 927 928 929 930 931 932 933
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
934 935 936
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
937 938
            raise TypeError("Unsupported dtype %s", var.dtype)

939 940
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
941

J
Jiabin Yang 已提交
942
        if framework._non_static_mode():
W
wanghuancoder 已提交
943 944 945
            _C_ops.assign_value(out_var, 'shape',
                                list(shape), 'dtype', out_dtype, value_name,
                                values)
946 947 948 949 950 951
            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
952
                var_tmp._share_underline_tensor_to(var)
953
            else:
954
                out_var._share_underline_tensor_to(var)
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
            return None
        else:
            op = block.append_op(
                type='assign_value',
                outputs={'Out': [out_var]},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(shape),
                    value_name: values
                })

            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})

977
            var.op = op
978
            return op
979 980


981 982
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
983
    This op initialize the variable by numpy array.
984 985 986 987

    Args:
        value (numpy): numpy array to initialize the variable

988 989 990
    Returns:
        A Tensor variable initialized by numpy.

991 992 993
    Examples:
        .. code-block:: python

994
            import paddle.fluid as fluid
995 996
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
997 998 999 1000 1001 1002 1003 1004 1005 1006
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

1007 1008
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
1009 1010

        Args:
1011 1012 1013
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
1014 1015

        Returns:
1016
            The initialization op
1017
        """
1018 1019
        block = self._check_block(block)

1020 1021
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
1022 1023

        # to be compatible of fp16 initalizers
1024
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
1040
            value_name = "fp32_values"
1041 1042
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
1043
            value_name = "int32_values"
1044
            values = [int(v) for v in np_value.flat]
1045 1046
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
1047
        if self._value.size > 1024 * 1024 * 1024:
1048 1049
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1050

J
Jiabin Yang 已提交
1051
        if framework._non_static_mode():
W
wanghuancoder 已提交
1052 1053 1054
            _C_ops.assign_value(out_var, 'shape',
                                list(self._value.shape), 'dtype', out_dtype,
                                value_name, values)
1055 1056 1057
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
1058
                var_tmp._share_underline_tensor_to(var)
1059
            else:
1060
                out_var._share_underline_tensor_to(var)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
            return None
        else:
            op = block.append_op(
                type='assign_value',
                outputs={'Out': out_var},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(self._value.shape),
                    value_name: values
                },
                stop_gradient=True)

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})

1081
            var.op = op
1082
            return op
1083 1084


1085 1086 1087 1088 1089 1090 1091
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
1092
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1112 1113 1114 1115 1116
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1117 1118 1119

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1120 1121
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1122 1123 1124 1125

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1126 1127 1128 1129
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1130 1131

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1132
            nn.initializer.set_global_initializer(None)
1133
    """
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1160 1161
def calculate_gain(nonlinearity, param=None):
    """
1162 1163
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some 
    ``paddle.nn.initializer`` api to adjust the initialization value.
1164 1165

    Args:
1166 1167
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as: 
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1168
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 
1169
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1170 1171

    Returns:
1172
        A float value, which is the recommended gain for this nonlinearity function.
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

    Examples:
        .. code-block:: python

            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1193 1194 1195
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
        raise ValueError("nonlinearity function {} is not suppported now.".
                         format(nonlinearity))


1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1220
TruncatedNormal = TruncatedNormalInitializer
1221 1222
Xavier = XavierInitializer
MSRA = MSRAInitializer
1223
Bilinear = BilinearInitializer