unary.py 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numpy as np

17
from paddle import _C_ops
18
from paddle.fluid.framework import dygraph_only, core, convert_np_dtype_to_dtype_
19

20
__all__ = []
21

22 23 24 25 26 27 28 29 30
_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
    core.VarDesc.VarType.BOOL,
]

31

32
@dygraph_only
33
def sin(x, name=None):
34
    """
35
    Calculate elementwise sin of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
36

37 38 39
    .. math::

        out = sin(x)
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.sin(sparse_x)
57

58
    """
59
    return _C_ops.sparse_sin(x)
60 61 62 63 64 65


@dygraph_only
def tan(x, name=None):
    """
    Calculate elementwise tan of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
66

67 68
    .. math::

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        out = tan(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.tan(sparse_x)
87

88
    """
89
    return _C_ops.sparse_tan(x)
90 91 92 93 94 95


@dygraph_only
def asin(x, name=None):
    """
    Calculate elementwise asin of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
96

97 98 99
    .. math::

        out = asin(x)
100 101 102 103 104 105 106 107 108 109 110 111 112 113

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

114 115 116
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.asin(sparse_x)
117

118
    """
119
    return _C_ops.sparse_asin(x)
120 121


122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
@dygraph_only
def transpose(x, perm, name=None):
    """
    Changes the perm order of ``x`` without changing its data, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = transpose(x, perm)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A transposed Sparse Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([[-2., 0.], [1., 2.]])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.transpose(sparse_x, [1, 0])

    """
    return _C_ops.sparse_transpose(x, perm)


153 154 155 156
@dygraph_only
def atan(x, name=None):
    """
    Calculate elementwise atan of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
157

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    .. math::

        out = atan(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.atan(sparse_x)
178

179
    """
180
    return _C_ops.sparse_atan(x)
181 182 183 184 185 186


@dygraph_only
def sinh(x, name=None):
    """
    Calculate elementwise sinh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    .. math::

        out = sinh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.sinh(sparse_x)
208

209
    """
210
    return _C_ops.sparse_sinh(x)
211 212 213 214 215 216


@dygraph_only
def asinh(x, name=None):
    """
    Calculate elementwise asinh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    .. math::

        out = asinh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.asinh(sparse_x)
238

239
    """
240
    return _C_ops.sparse_asinh(x)
241 242 243 244 245 246


@dygraph_only
def atanh(x, name=None):
    """
    Calculate elementwise atanh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    .. math::

        out = atanh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.atanh(sparse_x)
268

269
    """
270
    return _C_ops.sparse_atanh(x)
271 272 273 274 275 276


@dygraph_only
def tanh(x, name=None):
    """
    Calculate elementwise tanh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    .. math::

        out = tanh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
294

295 296 297
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.tanh(sparse_x)
298

299
    """
300
    return _C_ops.sparse_tanh(x)
301 302


303
@dygraph_only
304
def square(x, name=None):
305
    """
306
    Calculate elementwise square of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
307

308 309 310 311 312 313 314 315
    .. math::

        out = square(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
316

317 318 319 320 321 322 323
    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
324

325 326 327
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.square(sparse_x)
328

329
    """
330
    return _C_ops.sparse_square(x)
331 332 333 334 335 336


@dygraph_only
def sqrt(x, name=None):
    """
    Calculate elementwise sqrt of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    .. math::

        out = sqrt(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

355 356 357
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.sqrt(sparse_x)
358

359
    """
360
    return _C_ops.sparse_sqrt(x)
361 362


363
@dygraph_only
364
def log1p(x, name=None):
365
    """
366
    Calculate the natural log of (1+x), requiring x to be a SparseCooTensor or SparseCsrTensor.
367 368 369

    .. math::

370
        out = ln(1+x)
371 372 373 374 375 376 377 378 379 380 381 382 383 384

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

385 386 387
            dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.log1p(sparse_x)
388

389
    """
390
    return _C_ops.sparse_log1p(x)
391 392 393 394 395 396 397 398 399 400


@dygraph_only
def cast(x, index_dtype=None, value_dtype=None, name=None):
    """
    cast non-zero-index of SparseTensor to `index_dtype`, non-zero-element of SparseTensor to
    `value_dtype` , requiring x to be a SparseCooTensor or SparseCsrTensor.

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
401
        index_dtype (np.dtype|str, optional): Data type of the index of SparseCooTensor,
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
            or crows/cols of SparseCsrTensor. Can be uint8, int8, int16, int32, int64.
        value_dtype (np.dtype|str, optional): Data type of the value of SparseCooTensor,
            SparseCsrTensor. Can be bool, float16, float32, float64, int8, int32, int64, uint8.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2, 0, 1])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.cast(sparse_x, 'int32', 'float64')
419

420 421 422 423 424
    """
    if index_dtype and not isinstance(index_dtype, core.VarDesc.VarType):
        index_dtype = convert_np_dtype_to_dtype_(index_dtype)
    if value_dtype and not isinstance(value_dtype, core.VarDesc.VarType):
        value_dtype = convert_np_dtype_to_dtype_(value_dtype)
425
    return _C_ops.sparse_cast(x, index_dtype, value_dtype)
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453


@dygraph_only
def pow(x, factor, name=None):
    """
    Calculate elementwise pow of x, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = x^{factor}

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        factor (float|int): factor of pow.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.pow(sparse_x, 2)
454

455
    """
456
    return _C_ops.sparse_pow(x, float(factor))
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483


@dygraph_only
def neg(x, name=None):
    """
    Calculate elementwise negative of x, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = -x

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.neg(sparse_x)
484

485
    """
486
    return _C_ops.sparse_scale(x, -1.0, 0.0, True)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513


@dygraph_only
def abs(x, name=None):
    """
    Calculate elementwise absolute value of x, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = |x|

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.abs(sparse_x)
514

515
    """
516
    return _C_ops.sparse_abs(x)
Z
zhangkaihuo 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533


@dygraph_only
def coalesce(x):
    r"""
    the coalesced operator include sorted and merge, after coalesced, the indices of x is sorted and unique.

    Parameters:
        x (Tensor): the input SparseCooTensor.

    Returns:
        Tensor: return the SparseCooTensor after coalesced.

    Examples:
        .. code-block:: python

            import paddle
534

Z
zhangkaihuo 已提交
535
            from paddle.incubate import sparse
536 537 538 539 540 541 542 543 544

            indices = [[0, 0, 1], [1, 1, 2]]
            values = [1.0, 2.0, 3.0]
            sp_x = sparse.sparse_coo_tensor(indices, values)
            sp_x = sparse.coalesce(sp_x)
            print(sp_x.indices())
            #[[0, 1], [1, 2]]
            print(sp_x.values())
            #[3.0, 3.0]
545
    """
546
    return _C_ops.sparse_coalesce(x)
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574


@dygraph_only
def rad2deg(x, name=None):
    """
    Convert each of the elements of input x from angles in radians to degrees,
    requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        rad2deg(x) = 180/ \pi * x

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([3.142, 0., -3.142])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.rad2deg(sparse_x)
575

576 577
    """
    if x.dtype in _int_dtype_:
578 579
        x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32)
    return _C_ops.sparse_scale(x, 180.0 / np.pi, 0.0, True)
580 581 582 583 584 585 586


@dygraph_only
def deg2rad(x, name=None):
    """
    Convert each of the elements of input x from degrees to angles in radians,
    requiring x to be a SparseCooTensor or SparseCsrTensor.
587

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    .. math::

        deg2rad(x) = \pi * x / 180

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-180, 0, 180])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.deg2rad(sparse_x)
608

609 610
    """
    if x.dtype in _int_dtype_:
611 612
        x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32)
    return _C_ops.sparse_scale(x, np.pi / 180.0, 0.0, True)
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640


@dygraph_only
def expm1(x, name=None):
    """
    Calculate elementwise `exp(x)-1` , requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = exp(x) - 1

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.expm1(sparse_x)
    """
641
    return _C_ops.sparse_expm1(x)
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698


@dygraph_only
def reshape(x, shape, name=None):
    """
    Changes the shape of ``x`` without changing its value, requiring x to be a SparseCooTensor or SparseCsrTensor.
    Currently this function can only reshape the sparse dims of ``x`` , but ``shape`` argument must be specified
    as the shape of the reshaped tensor.

    Note that if x is a SparseCsrTensor, then len(shape) must be 2 or 3.

    There are some tricks when specifying the target shape.

        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.

        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The indices of 0 in the target shape can not exceed the rank of x.

    Here are some examples to explain it.

        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.

        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.

        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.

    Args:
        x (Tensor): The input sparse tensor with data type ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``.
        shape (list|tuple): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x_shape = [6, 2, 3]
            new_shape = [1, 0, 2, -1, 3]
            format = "coo"

            dense_x = paddle.randint(-100, 100, x_shape) * paddle.randint(0, 2, x_shape)

            if format == "coo":
                sp_x = dense_x.to_sparse_coo(len(x_shape))
            else:
                sp_x = dense_x.to_sparse_csr()
            sp_out = paddle.incubate.sparse.reshape(sp_x, new_shape)

            print(sp_out)
            # the shape of sp_out is [1, 2, 2, 3, 3]

    """
    return _C_ops.sparse_reshape(x, shape)