rowwise_add_op.h 2.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
D
dongzhihong 已提交
16 17
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
18 19 20 21

namespace paddle {
namespace operators {

D
dongzhihong 已提交
22 23 24 25 26 27 28 29
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
qijun 已提交
30
template <typename Place, typename T>
D
dongzhihong 已提交
31
class RowwiseAddKernel : public OpKernel {
32
 public:
D
dongzhihong 已提交
33
  void Compute(const framework::ExecutionContext& context) const override {
34
    auto out = context.Output<Tensor>(0);
Q
qijun 已提交
35
    out->mutable_data<T>(context.GetPlace());
Q
qijun 已提交
36

37 38
    auto input = EigenMatrix<T>::From(*context.Input<Tensor>(0));
    auto bias = EigenVector<T>::From(*context.Input<Tensor>(1));
39
    auto output = EigenMatrix<T>::From(*out);
Q
qijun 已提交
40 41 42 43 44

    const int bias_size = bias.dimension(0);
    const int rest_size = input.size() / bias_size;
    Eigen::DSizes<int, 1> one_d(input.size());
    Eigen::DSizes<int, 1> bcast(rest_size);
45
    output.reshape(one_d).device(context.GetEigenDevice<Place>()) =
Q
qijun 已提交
46
        input.reshape(one_d) + bias.broadcast(bcast).reshape(one_d);
47 48 49
  }
};

D
dongzhihong 已提交
50
template <typename Place, typename T>
51
class RowwiseAddGradKernel : public framework::OpKernel {
52
 public:
53
  void Compute(const framework::ExecutionContext& context) const override {
D
dongzhihong 已提交
54 55
    auto* XGrad = context.Output<Tensor>(0);
    auto* bGrad = context.Output<Tensor>(1);
D
dongzhihong 已提交
56 57 58 59 60
    XGrad->mutable_data<T>(context.GetPlace());
    bGrad->mutable_data<T>(context.GetPlace());

    // I, O, OG  => [X, b], [Out], [OutGrad]
    auto OutGrad = EigenMatrix<T>::From(*context.Input<Tensor>(3));
D
dongzhihong 已提交
61
    EigenMatrix<T>::From(*XGrad).device(context.GetEigenDevice<Place>()) =
D
dongzhihong 已提交
62
        OutGrad;
D
dongzhihong 已提交
63

D
dongzhihong 已提交
64
    // https://eigen.tuxfamily.org/dox/unsupported/TensorBase_8h_source.html
D
dongzhihong 已提交
65
    EigenVector<T>::Flatten(*bGrad).device(context.GetEigenDevice<Place>()) =
D
dongzhihong 已提交
66 67 68
        OutGrad.cumsum(1);  // colwise add
  }
};
69 70
}  // namespace operators
}  // namespace paddle