layer_test.cc 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <cmath>
16 17 18
#include <string>

#include "gtest/gtest.h"
19

20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/variable.h"
22
#include "paddle/phi/api/include/api.h"
23 24
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
25
#include "paddle/phi/core/tensor_utils.h"
26 27
#include "paddle/phi/kernels/funcs/math_function.h"

28
#include "paddle/fluid/jit/function_utils.h"
29 30 31
#include "paddle/fluid/jit/layer.h"
#include "paddle/fluid/jit/serializer.h"

32 33 34 35 36 37 38 39 40 41 42 43 44 45
USE_OP_ITSELF(elementwise_add);
USE_OP_ITSELF(matmul_v2);
USE_OP_ITSELF(relu);
USE_OP_ITSELF(reduce_mean);
USE_OP_ITSELF(feed);
USE_OP_ITSELF(fetch);
USE_OP_ITSELF(scale);

PD_DECLARE_KERNEL(add, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(matmul, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(relu, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(mean, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(scale, CPU, ALL_LAYOUT);

46 47 48 49 50 51 52 53
#if defined(PADDLE_WITH_CUDA)
PD_DECLARE_KERNEL(add, KPS, ALL_LAYOUT);
PD_DECLARE_KERNEL(matmul, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(relu, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(mean, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(scale, GPU, ALL_LAYOUT);
#endif

54 55
namespace paddle {
namespace jit {
56
using DenseTensor = phi::DenseTensor;
57

58
std::vector<Tensor> PrepareInputs(const phi::Place& place) {
59
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
60
  auto& dev_ctx = *pool.Get(place);
61

62 63 64 65
  DenseTensor t;
  t.Resize(phi::make_ddim({2, 4}));
  t.mutable_data<float>(place);
  phi::funcs::set_constant(dev_ctx, &t, 2.);
66

67
  return utils::ToTensors({t});
68 69
}

70
TEST(CpuLayerTest, Construct) {
71 72 73 74
  auto place = phi::CPUPlace();
  std::string path = "./multi_program_load/export";
  auto layer = jit::Load(path, place);
  auto inputs = PrepareInputs(place);
75 76

  auto outs = layer.forward(inputs);
77
  auto out_data = outs[0].data<float>();
78 79
  EXPECT_NEAR(out_data[0], 0.02194316, 1e-6);

80
  auto func = layer.Function("infer");
81
  outs = (*func)(inputs);
82
  out_data = outs[0].data<float>();
83
  EXPECT_NEAR(out_data[0], 1.41562390, 1e-6);
84 85 86 87
  auto pow_out =
      paddle::experimental::pow(outs[0], paddle::experimental::Scalar(2));
  out_data = pow_out.data<float>();
  EXPECT_NEAR(out_data[0], pow(1.41562390, 2.0), 1e-6);
88 89
}

90 91
#if defined(PADDLE_WITH_CUDA)
TEST(GpuLayerTest, Construct) {
92
  auto place = phi::GPUPlace();
93

94 95 96
  std::string path = "./multi_program_load/export";
  auto layer = jit::Load(path, place);
  auto inputs = PrepareInputs(place);
97 98

  auto outs = layer.forward(inputs);
99 100 101 102
  auto gpu_tensor = outs[0];
  auto cpu_tensor =
      paddle::experimental::copy_to(gpu_tensor, phi::CPUPlace(), true);
  auto out_data = cpu_tensor.data<float>();
103 104
  EXPECT_NEAR(out_data[0], 0.02194316, 1e-6);

105
  auto func = layer.Function("infer");
106
  outs = (*func)(inputs);
107 108 109
  gpu_tensor = outs[0];
  cpu_tensor = paddle::experimental::copy_to(gpu_tensor, phi::CPUPlace(), true);
  out_data = cpu_tensor.data<float>();
110
  EXPECT_NEAR(out_data[0], 1.41562390, 1e-6);
111 112 113 114 115

  auto sqrt_out = paddle::experimental::sqrt(outs[0]);
  cpu_tensor = paddle::experimental::copy_to(sqrt_out, phi::CPUPlace(), true);
  out_data = cpu_tensor.data<float>();
  EXPECT_NEAR(out_data[0], sqrt(1.41562390), 1e-6);
116 117 118
}
#endif

119 120
}  // namespace jit
}  // namespace paddle