test_model.py 40.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle import to_tensor
C
cnn 已提交
28
from paddle.nn import Conv2D, Linear, ReLU, Sequential, Softmax
29

30 31
from paddle import Model
from paddle.static import InputSpec
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
Y
yukavio 已提交
36 37
import paddle.vision.models as models
import paddle.fluid.dygraph.jit as jit
38
from paddle.io import DistributedBatchSampler, Dataset
39
from paddle.hapi.model import prepare_distributed_context
40 41
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
42 43


44
class LeNetDygraph(paddle.nn.Layer):
45

L
LielinJiang 已提交
46
    def __init__(self, num_classes=10):
47 48
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
49 50 51 52 53
        self.features = Sequential(Conv2D(1, 6, 3, stride=1, padding=1), ReLU(),
                                   paddle.fluid.dygraph.Pool2D(2, 'max', 2),
                                   Conv2D(6, 16, 5, stride=1, padding=0),
                                   ReLU(),
                                   paddle.fluid.dygraph.Pool2D(2, 'max', 2))
54 55

        if num_classes > 0:
56 57
            self.fc = Sequential(Linear(400, 120), Linear(120, 84),
                                 Linear(84, 10))
58 59 60 61 62 63 64 65 66 67

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


68
class ModelInner(paddle.nn.Layer):
69

70 71 72 73 74 75 76 77 78 79
    def __init__(self):
        super(ModelInner, self).__init__()
        self.fc = paddle.nn.Linear(3, 4)

    def forward(self, x):
        y = self.fc(x)
        return y, 0


class ModelOutter(paddle.nn.Layer):
80

81 82 83 84 85 86 87 88 89 90 91
    def __init__(self):
        super(ModelOutter, self).__init__()
        self.module1 = ModelInner()
        self.module2 = paddle.nn.Linear(4, 5)

    def forward(self, x):
        y, dummpy = self.module1(x)
        y = self.module2(y)
        return y, 3


92
class LeNetListInput(paddle.nn.Layer):
93

94 95 96 97 98 99
    def __init__(self, num_classes=10):
        super(LeNetListInput, self).__init__()
        self.num_classes = num_classes
        self.cov = Conv2D(1, 6, 3, stride=1, padding=1)
        for param in self.cov.parameters():
            param.trainable = False
100 101 102 103 104
        self.features = Sequential(self.cov, ReLU(),
                                   paddle.fluid.dygraph.Pool2D(2, 'max', 2),
                                   Conv2D(6, 16, 5, stride=1, padding=0),
                                   ReLU(),
                                   paddle.fluid.dygraph.Pool2D(2, 'max', 2))
105 106

        if num_classes > 0:
107 108
            self.fc = Sequential(Linear(400, 120), Linear(120, 84),
                                 Linear(84, 10))
109

110 111 112 113 114 115 116 117 118 119 120
    def forward(self, inputs):
        x = inputs[0]
        x = self.features(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs[1])
        return x


class LeNetDictInput(LeNetDygraph):
121

122 123 124 125 126 127 128 129 130
    def forward(self, inputs):
        x = self.features(inputs['x1'])

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs['x2'])
        return x


131
class MnistDataset(MNIST):
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
159 160
    optim = fluid.optimizer.Adam(learning_rate=0.001,
                                 parameter_list=model.parameters())
161 162 163
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
164
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
165 166 167 168 169 170 171 172 173 174 175 176 177
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

178 179 180
            cnt += (np.argmax(
                outputs.numpy(),
                -1)[:, np.newaxis] == labels.numpy()).astype('int').sum()
181 182 183 184 185 186 187

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
188

189 190 191
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
J
Jiangxinz 已提交
192
            cls().skipTest('module not tested when ONLY_CPU compling')
193
        cls.device = paddle.set_device('gpu')
194 195 196 197 198
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
199 200 201 202 203 204 205 206 207 208 209 210 211
        cls.test_dataset = MnistDataset(mode='test',
                                        return_label=False,
                                        sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(cls.train_dataset,
                                               places=cls.device,
                                               batch_size=64)
        cls.val_loader = fluid.io.DataLoader(cls.val_dataset,
                                             places=cls.device,
                                             batch_size=64)
        cls.test_loader = fluid.io.DataLoader(cls.test_dataset,
                                              places=cls.device,
                                              batch_size=64)
212 213

        seed = 333
C
cnn 已提交
214
        paddle.seed(seed)
L
Leo Chen 已提交
215
        paddle.framework.random._manual_program_seed(seed)
216 217 218 219 220 221 222

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

223 224
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
225

226 227 228
        cls.save_dir = os.path.join(tempfile.mkdtemp(), '.cache_test_model')
        if not os.path.exists(cls.save_dir):
            os.makedirs(cls.save_dir)
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

244 245 246 247 248 249
    def test_fit_dynamic_with_tuple_input(self):
        self.fit_with_tuple_input(True)

    def test_fit_static_with_tuple_input(self):
        self.fit_with_tuple_input(False)

250 251 252 253 254 255
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

256 257 258 259 260 261
    def test_fit_dynamic_with_num_iters(self):
        self.fit(True, num_iters=1)

    def test_fit_static_with_num_iters(self):
        self.fit(False, num_iters=1)

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

277
    def fit(self, dynamic, num_replicas=None, rank=None, num_iters=None):
278 279
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
C
cnn 已提交
280
        paddle.seed(seed)
L
Leo Chen 已提交
281
        paddle.framework.random._manual_program_seed(seed)
282

L
LielinJiang 已提交
283
        net = LeNet()
284 285
        optim_new = fluid.optimizer.Adam(learning_rate=0.001,
                                         parameter_list=net.parameters())
286
        model = Model(net, inputs=self.inputs, labels=self.labels)
287 288 289
        model.prepare(optim_new,
                      loss=CrossEntropyLoss(reduction="sum"),
                      metrics=Accuracy())
290 291 292 293 294
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

295 296 297 298 299
        model.fit(self.train_dataset,
                  batch_size=64,
                  shuffle=False,
                  num_iters=num_iters)

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
        result = model.evaluate(self.val_dataset,
                                batch_size=64,
                                num_iters=num_iters)

        train_sampler = DistributedBatchSampler(self.train_dataset,
                                                batch_size=64,
                                                shuffle=False,
                                                num_replicas=num_replicas,
                                                rank=rank)
        val_sampler = DistributedBatchSampler(self.val_dataset,
                                              batch_size=64,
                                              shuffle=False,
                                              num_replicas=num_replicas,
                                              rank=rank)

        train_loader = fluid.io.DataLoader(self.train_dataset,
                                           batch_sampler=train_sampler,
                                           places=self.device,
                                           return_list=True)

        val_loader = fluid.io.DataLoader(self.val_dataset,
                                         batch_sampler=val_sampler,
                                         places=self.device,
                                         return_list=True)
324 325 326 327 328 329 330 331 332 333 334

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def fit_with_tuple_input(self, dynamic, num_replicas=None, rank=None):
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
        paddle.seed(seed)
        paddle.framework.random._manual_program_seed(seed)

        net = LeNet()
335 336
        optim_new = fluid.optimizer.Adam(learning_rate=0.001,
                                         parameter_list=net.parameters())
337
        model = Model(net, inputs=tuple(self.inputs), labels=tuple(self.labels))
338 339 340
        model.prepare(optim_new,
                      loss=CrossEntropyLoss(reduction="sum"),
                      metrics=Accuracy())
341 342 343 344 345
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        train_sampler = DistributedBatchSampler(self.train_dataset,
                                                batch_size=64,
                                                shuffle=False,
                                                num_replicas=num_replicas,
                                                rank=rank)
        val_sampler = DistributedBatchSampler(self.val_dataset,
                                              batch_size=64,
                                              shuffle=False,
                                              num_replicas=num_replicas,
                                              rank=rank)

        train_loader = fluid.io.DataLoader(self.train_dataset,
                                           batch_sampler=train_sampler,
                                           places=self.device,
                                           return_list=True)

        val_loader = fluid.io.DataLoader(self.val_dataset,
                                         batch_sampler=val_sampler,
                                         places=self.device,
                                         return_list=True)
366 367 368 369 370 371

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
372 373
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
374 375 376 377
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

378 379 380
        sampler = DistributedBatchSampler(self.val_dataset,
                                          batch_size=64,
                                          shuffle=False)
381

382 383 384 385
        val_loader = fluid.io.DataLoader(self.val_dataset,
                                         batch_sampler=sampler,
                                         places=self.device,
                                         return_list=True)
386 387 388 389 390 391 392

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
393 394
        model = Model(LeNet(), self.inputs)
        model.prepare()
395
        model.load(self.weight_path)
396 397 398
        output = model.predict(self.test_dataset,
                               batch_size=64,
                               stack_outputs=True)
399 400 401 402 403
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

404 405 406
        sampler = DistributedBatchSampler(self.test_dataset,
                                          batch_size=64,
                                          shuffle=False)
407

408 409 410 411
        test_loader = fluid.io.DataLoader(self.test_dataset,
                                          batch_sampler=sampler,
                                          places=self.device,
                                          return_list=True)
412 413 414 415 416

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None

417 418 419 420 421 422
    def test_predict_without_inputs(self):
        fluid.enable_dygraph(self.device)
        model = Model(LeNet())
        model.prepare()
        model.load(self.weight_path)
        model._inputs = None
423 424 425
        output = model.predict(self.test_dataset,
                               batch_size=64,
                               stack_outputs=True)
426 427 428
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
        fluid.disable_dygraph()

429 430 431
    def test_summary_gpu(self):
        paddle.disable_static(self.device)
        rnn = paddle.nn.LSTM(16, 32, 2)
432 433
        params_info = paddle.summary(rnn, [(-1, 23, 16),
                                           ((2, None, 32), (2, -1, 32))])
434

435

436
class MyModel(paddle.nn.Layer):
437

L
LielinJiang 已提交
438
    def __init__(self):
439
        super(MyModel, self).__init__()
440
        self._fc = Linear(20, 10)
441 442 443 444 445 446

    def forward(self, x):
        y = self._fc(x)
        return y


447
class MyDataset(Dataset):
448

449 450 451 452 453 454 455 456
    def __getitem__(self, idx):
        return np.random.random(size=(20,)).astype(np.float32), \
               np.random.randint(0, 10, size=(1,)).astype(np.int64)

    def __len__(self):
        return 40


457
class TestModelFunction(unittest.TestCase):
458

459
    def set_seed(self, seed=1024):
C
cnn 已提交
460
        paddle.seed(seed)
L
Leo Chen 已提交
461
        paddle.framework.random._manual_program_seed(seed)
462 463 464 465 466 467 468 469 470

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
L
LielinJiang 已提交
471
            m = MyModel()
472 473 474
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
475 476
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
477 478 479 480 481 482 483 484 485
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
486
            device = paddle.set_device('cpu')
487 488 489
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

L
LielinJiang 已提交
490
            net = MyModel()
491
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
492
                                         parameter_list=net.parameters())
493

494 495
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
496
            model = Model(net, inputs, labels)
497
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
498 499 500 501
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

502
    def test_test_batch(self):
503 504 505 506 507 508 509 510
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
511
            output = m(to_tensor(data))
512 513 514 515 516
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
517
            device = paddle.set_device('cpu')
518 519
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
520
            net = MyModel()
521
            inputs = [InputSpec([None, dim], 'float32', 'x')]
522 523
            model = Model(net, inputs)
            model.prepare()
524
            out, = model.predict_batch([data])
525

526
            np.testing.assert_allclose(out, ref, rtol=1e-6)
527 528 529
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
530 531 532
        path = os.path.join(tempfile.mkdtemp(), '.cache_test_save_load')
        if not os.path.exists(path):
            os.makedirs(path)
533
        for dynamic in [True, False]:
534
            device = paddle.set_device('cpu')
535
            fluid.enable_dygraph(device) if dynamic else None
L
LielinJiang 已提交
536
            net = MyModel()
537 538
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
539
            optim = fluid.optimizer.SGD(learning_rate=0.001,
540 541
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
542 543
            model.prepare(optimizer=optim,
                          loss=CrossEntropyLoss(reduction="sum"))
544 545
            model.save(path)
            model.load(path)
546
            fluid.disable_dygraph() if dynamic else None
547
        shutil.rmtree(path)
548

549 550
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
551 552 553 554 555

        path = os.path.join(tempfile.mkdtemp(), '.cache_dynamic_load')
        if not os.path.exists(path):
            os.makedirs(path)

556 557 558 559 560 561
        for new_optimizer in [True, False]:
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
562 563
                optim = paddle.optimizer.Adam(learning_rate=0.001,
                                              parameters=net.parameters())
564
            else:
565 566
                optim = fluid.optimizer.Adam(learning_rate=0.001,
                                             parameter_list=net.parameters())
567
            model = Model(net, inputs, labels)
568 569
            model.prepare(optimizer=optim,
                          loss=CrossEntropyLoss(reduction="sum"))
570
            model.fit(mnist_data, batch_size=64, verbose=0)
571 572
            model.save(path)
            model.load(path)
573
            paddle.enable_static()
574
        shutil.rmtree(path)
575

576
    def test_dynamic_save_static_load(self):
577 578 579 580
        path = os.path.join(tempfile.mkdtemp(),
                            '.cache_dynamic_save_static_load')
        if not os.path.exists(path):
            os.makedirs(path)
581
        # dynamic saving
582
        device = paddle.set_device('cpu')
583
        fluid.enable_dygraph(device)
584
        model = Model(MyModel())
585 586
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
587
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
588
        model.save(path)
589
        fluid.disable_dygraph()
590

591 592
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
LielinJiang 已提交
593
        model = Model(MyModel(), inputs, labels)
594 595
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
596
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
597
        model.load(path)
598 599 600
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
601 602 603 604
        path = os.path.join(tempfile.mkdtemp(),
                            '.cache_test_static_save_dynamic_load')
        if not os.path.exists(path):
            os.makedirs(path)
L
LielinJiang 已提交
605
        net = MyModel()
606 607
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
608
        optim = fluid.optimizer.SGD(learning_rate=0.001,
609 610
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
611
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
612
        model.save(path)
613

614
        device = paddle.set_device('cpu')
615 616
        fluid.enable_dygraph(device)  #if dynamic else None

L
LielinJiang 已提交
617
        net = MyModel()
618 619
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
620
        optim = fluid.optimizer.SGD(learning_rate=0.001,
621 622
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
623
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
624
        model.load(path)
625 626 627 628 629
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
630
            device = paddle.set_device('cpu')
631
            fluid.enable_dygraph(device) if dynamic else None
632
            net = MyModel()
633
            inputs = [InputSpec([None, 20], 'float32', 'x')]
634 635
            model = Model(net, inputs)
            model.prepare()
636 637 638 639 640
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
641
    def test_summary(self):
642

L
LielinJiang 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

662 663
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
664
            model.summary(input_size=(20), dtype='float32')
665

666 667 668
    def test_summary_non_tensor(self):
        paddle.summary(ModelOutter(), input_size=(-1, 3))

L
LielinJiang 已提交
669
    def test_summary_nlp(self):
670

671 672 673 674 675 676
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

L
LielinJiang 已提交
677 678 679 680 681
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
682

L
LielinJiang 已提交
683
        rnn = paddle.nn.LSTM(16, 32, 2)
684 685
        params_info = paddle.summary(rnn, [(-1, 23, 16),
                                           ((2, None, 32), (2, -1, 32))])
686 687 688 689 690 691 692 693 694 695 696 697
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.GRU(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)
L
LielinJiang 已提交
698

699
    def test_summary_input(self):
700 701 702 703 704 705
        paddle.enable_static()
        mymodel = MyModel()
        input_data = paddle.rand([1, 20])
        paddle.summary(mymodel, input=input_data)
        paddle.disable_static()

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        input_data = paddle.rand([4, 23, 16])
        paddle.summary(rnn, input=input_data)

        lenet_List_input = LeNetListInput()
        input_data = [paddle.rand([1, 1, 28, 28]), paddle.rand([1, 400])]
        paddle.summary(lenet_List_input, input=input_data)

        lenet_dict_input = LeNetDictInput()
        input_data = {
            'x1': paddle.rand([1, 1, 28, 28]),
            'x2': paddle.rand([1, 400])
        }
        paddle.summary(lenet_dict_input, input=input_data)

L
LielinJiang 已提交
721 722 723 724 725
    def test_summary_dtype(self):
        input_shape = (3, 1)
        net = paddle.nn.Embedding(10, 3, sparse=True)
        paddle.summary(net, input_shape, dtypes='int64')

L
LielinJiang 已提交
726 727 728
    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
729
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
730 731 732 733 734 735 736

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
737
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
738

Y
yukavio 已提交
739
    def test_static_flops(self):
J
Jiabin Yang 已提交
740 741
        if paddle.fluid.framework._in_eager_without_dygraph_check():
            return
Y
yukavio 已提交
742 743 744 745 746 747 748 749 750 751 752 753
        paddle.disable_static()
        net = models.__dict__['mobilenet_v2'](pretrained=False)
        inputs = paddle.randn([1, 3, 224, 224])
        static_program = jit._trace(net, inputs=[inputs])[1]
        paddle.flops(static_program, [1, 3, 224, 224], print_detail=True)

    def test_dynamic_flops(self):
        net = models.__dict__['mobilenet_v2'](pretrained=False)

        def customize_dropout(m, x, y):
            m.total_ops += 0

754 755 756
        paddle.flops(net, [1, 3, 224, 224],
                     custom_ops={paddle.nn.Dropout: customize_dropout},
                     print_detail=True)
Y
yukavio 已提交
757

758
    def test_dynamic_flops_with_multiple_outputs(self):
759 760 761 762
        net = paddle.nn.MaxPool2D(kernel_size=2,
                                  stride=2,
                                  padding=0,
                                  return_mask=True)
763 764 765 766

        def customize_dropout(m, x, y):
            m.total_ops += 0

767 768 769
        paddle.flops(net, [1, 2, 32, 32],
                     custom_ops={paddle.nn.Dropout: customize_dropout},
                     print_detail=True)
770

771
    def test_export_deploy_model(self):
772
        self.set_seed()
773
        np.random.seed(201)
774 775 776 777 778 779

        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_export_deploy_model')
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

780
        for dynamic in [True, False]:
781
            paddle.disable_static() if dynamic else None
782 783
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
784
            net = LeNet()
785
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
786 787
            model = Model(net, inputs)
            model.prepare()
788

789 790
            tensor_img = np.array(np.random.random((1, 1, 28, 28)),
                                  dtype=np.float32)
791

792
            model.save(save_dir, training=False)
793
            ori_results = model.predict_batch(tensor_img)
794
            fluid.disable_dygraph() if dynamic else None
795

796 797
            place = fluid.CPUPlace(
            ) if not fluid.is_compiled_with_cuda() else fluid.CUDAPlace(0)
798 799 800
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
801 802 803
                [inference_program, feed_target_names,
                 fetch_targets] = (paddle.static.io.load_inference_model(
                     path_prefix=save_dir, executor=exe))
804 805 806
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
807 808 809 810
                np.testing.assert_allclose(results,
                                           ori_results,
                                           rtol=1e-5,
                                           atol=1e-6)
811

812
            paddle.enable_static()
813

814 815
        shutil.rmtree(save_dir)

L
LiuChiachi 已提交
816
    def test_dygraph_export_deploy_model_about_inputs(self):
J
Jiaqi Liu 已提交
817 818
        self.set_seed()
        np.random.seed(201)
819 820
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
L
LiuChiachi 已提交
821
        # without inputs
822 823 824 825
        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_dygraph_export_deploy')
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
826
        for initial in ["fit", "train_batch", "eval_batch", "predict_batch"]:
827 828
            net = LeNet()
            model = Model(net)
829 830 831 832
            optim = fluid.optimizer.Adam(learning_rate=0.001,
                                         parameter_list=model.parameters())
            model.prepare(optimizer=optim,
                          loss=CrossEntropyLoss(reduction="sum"))
833 834 835
            if initial == "fit":
                model.fit(mnist_data, batch_size=64, verbose=0)
            else:
836 837
                img = np.array(np.random.random((1, 1, 28, 28)),
                               dtype=np.float32)
838 839 840 841 842 843
                label = np.array(np.random.rand(1, 1), dtype=np.int64)
                if initial == "train_batch":
                    model.train_batch([img], [label])
                elif initial == "eval_batch":
                    model.eval_batch([img], [label])
                else:
844
                    model.predict_batch([img])
845 846

            model.save(save_dir, training=False)
847
        shutil.rmtree(save_dir)
L
LiuChiachi 已提交
848
        # with inputs, and the type of inputs is InputSpec
849 850
        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_dygraph_export_deploy_2')
L
LiuChiachi 已提交
851 852 853 854 855
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        net = LeNet()
        inputs = InputSpec([None, 1, 28, 28], 'float32', 'x')
        model = Model(net, inputs)
856 857
        optim = fluid.optimizer.Adam(learning_rate=0.001,
                                     parameter_list=model.parameters())
L
LiuChiachi 已提交
858 859 860
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
        model.save(save_dir, training=False)
        shutil.rmtree(save_dir)
861

L
lyuwenyu 已提交
862 863 864 865 866 867 868 869 870
    def test_accumulate(self, ):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
        net = MyModel()
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=net.parameters())
        inputs = [InputSpec([None, dim], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
lyuwenyu 已提交
871

L
lyuwenyu 已提交
872 873
        for amp_cfg in [None, 'O1']:
            model = Model(net, inputs, labels)
874 875 876
            model.prepare(optim,
                          loss=CrossEntropyLoss(reduction="sum"),
                          amp_configs=amp_cfg)
L
lyuwenyu 已提交
877 878 879 880 881 882 883 884
            losses, grads = [], []
            for stat in [False, False, True]:
                loss, = model.train_batch([data], [label], update=stat)
                losses.append(loss)
                grads.append([p.grad.numpy() for p in net.parameters()])

            for grad1, grad2, grad3 in zip(*grads):
                np.testing.assert_almost_equal(grad1 * 2, grad2, decimal=4)
885 886 887
                np.testing.assert_almost_equal(grad3,
                                               np.zeros_like(grad3),
                                               decimal=4)
L
lyuwenyu 已提交
888 889 890

            np.testing.assert_almost_equal(losses[0], losses[1], decimal=4)
            np.testing.assert_almost_equal(losses[0], losses[2], decimal=4)
L
lyuwenyu 已提交
891

892

893
class TestModelWithLRScheduler(unittest.TestCase):
894

895 896 897 898
    def test_fit_by_step(self):
        base_lr = 1e-3
        boundaries = [5, 8]

899 900 901 902 903 904 905 906 907 908 909 910
        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=4,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
911 912 913 914
            optimizer = paddle.optimizer.Momentum(learning_rate=learning_rate,
                                                  weight_decay=weight_decay,
                                                  momentum=momentum,
                                                  parameters=parameters)
915 916
            return optimizer

917
        # dynamic test
918 919 920 921 922 923 924 925 926 927 928 929
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

930 931
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))
932
        # static test
933 934
        paddle.enable_static()

935 936 937 938 939 940 941 942 943 944
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))

    def test_fit_by_epoch(self):
        base_lr = 1e-3
        boundaries = [5, 8]
        epochs = 10
        wamup_epochs = 4

        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=wamup_epochs,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
966 967 968 969
            optimizer = paddle.optimizer.Momentum(learning_rate=learning_rate,
                                                  weight_decay=weight_decay,
                                                  momentum=momentum,
                                                  parameters=parameters)
970 971 972 973 974 975 976 977 978 979 980 981 982 983
            return optimizer

        # dynamic test
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

984 985
        lr_scheduler_callback = paddle.callbacks.LRScheduler(by_step=False,
                                                             by_epoch=True)
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))
        # static test
        paddle.enable_static()

        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

1013 1014
        lr_scheduler_callback = paddle.callbacks.LRScheduler(by_step=False,
                                                             by_epoch=True)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))

1031

1032
class TestRaiseError(unittest.TestCase):
1033

1034
    def test_input_without_name(self):
L
LielinJiang 已提交
1035
        net = MyModel()
1036 1037
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
1038 1039 1040
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

1041 1042 1043 1044 1045 1046 1047 1048 1049
    def test_static_without_inputs(self):
        paddle.enable_static()
        net = MyModel()
        with self.assertRaises(TypeError):
            model = Model(net)

    def test_save_infer_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel()
1050
        save_dir = os.path.join(tempfile.mkdtemp(), '.cache_test_save_infer')
1051 1052 1053 1054 1055 1056
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
1057
        shutil.rmtree(save_dir)
1058

1059 1060 1061 1062 1063 1064 1065
    def test_save_infer_model_without_file_prefix(self):
        paddle.enable_static()
        net = LeNet()
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
        model = Model(net, inputs)
        model.prepare()
        path = ""
1066 1067
        tensor_img = np.array(np.random.random((1, 1, 28, 28)),
                              dtype=np.float32)
1068 1069 1070
        with self.assertRaises(ValueError):
            model.save(path, training=False)

1071

1072 1073
if __name__ == '__main__':
    unittest.main()