test_where_op.py 16.7 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
G
GaoWei8 已提交
18
import paddle
19 20 21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.op import Operator
from paddle.fluid.backward import append_backward
26
from paddle.fluid.framework import _test_eager_guard
27 28 29


class TestWhereOp(OpTest):
30

31
    def setUp(self):
32
        self.op_type = 'where'
H
hong 已提交
33
        self.python_api = paddle.where
34 35 36 37 38
        self.init_config()
        self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
        self.outputs = {'Out': np.where(self.cond, self.x, self.y)}

    def test_check_output(self):
39
        self.check_output(check_eager=False)
40 41

    def test_check_grad(self):
42
        self.check_grad(['X', 'Y'], 'Out', check_eager=False)
43 44

    def init_config(self):
45 46 47
        self.x = np.random.uniform((-3), 5, 100).astype('float64')
        self.y = np.random.uniform((-3), 5, 100).astype('float64')
        self.cond = np.zeros(100).astype('bool')
48 49 50


class TestWhereOp2(TestWhereOp):
51

52
    def init_config(self):
53 54 55
        self.x = np.random.uniform((-5), 5, (60, 2)).astype('float64')
        self.y = np.random.uniform((-5), 5, (60, 2)).astype('float64')
        self.cond = np.ones((60, 2)).astype('bool')
56 57 58


class TestWhereOp3(TestWhereOp):
59

60
    def init_config(self):
61 62
        self.x = np.random.uniform((-3), 5, (20, 2, 4)).astype('float64')
        self.y = np.random.uniform((-3), 5, (20, 2, 4)).astype('float64')
63 64 65 66
        self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)


class TestWhereAPI(unittest.TestCase):
67

G
GaoWei8 已提交
68 69
    def setUp(self):
        self.init_data()
70

G
GaoWei8 已提交
71 72 73
    def init_data(self):
        self.shape = [10, 15]
        self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
74 75
        self.x = np.random.uniform((-2), 3, self.shape).astype(np.float32)
        self.y = np.random.uniform((-2), 3, self.shape).astype(np.float32)
G
GaoWei8 已提交
76
        self.out = np.where(self.cond, self.x, self.y)
77

G
GaoWei8 已提交
78
    def ref_x_backward(self, dout):
79
        return np.where((self.cond == True), dout, 0)
G
GaoWei8 已提交
80 81

    def ref_y_backward(self, dout):
82
        return np.where((self.cond == False), dout, 0)
G
GaoWei8 已提交
83 84 85 86 87

    def test_api(self, use_cuda=False):
        for x_stop_gradient in [False, True]:
            for y_stop_gradient in [False, True]:
                with fluid.program_guard(Program(), Program()):
88 89 90 91 92 93 94 95 96
                    cond = fluid.layers.data(name='cond',
                                             shape=self.shape,
                                             dtype='bool')
                    x = fluid.layers.data(name='x',
                                          shape=self.shape,
                                          dtype='float32')
                    y = fluid.layers.data(name='y',
                                          shape=self.shape,
                                          dtype='float32')
G
GaoWei8 已提交
97 98 99 100 101
                    x.stop_gradient = x_stop_gradient
                    y.stop_gradient = y_stop_gradient
                    result = paddle.where(cond, x, y)
                    append_backward(layers.mean(result))
                    for use_cuda in [False, True]:
102 103
                        if (use_cuda
                                and (not fluid.core.is_compiled_with_cuda())):
G
GaoWei8 已提交
104
                            break
105 106
                        place = (fluid.CUDAPlace(0)
                                 if use_cuda else fluid.CPUPlace())
G
GaoWei8 已提交
107 108
                        exe = fluid.Executor(place)
                        fetch_list = [result, result.grad_name]
109
                        if (x_stop_gradient is False):
G
GaoWei8 已提交
110
                            fetch_list.append(x.grad_name)
111
                        if (y_stop_gradient is False):
G
GaoWei8 已提交
112
                            fetch_list.append(y.grad_name)
113 114 115 116 117 118 119
                        out = exe.run(fluid.default_main_program(),
                                      feed={
                                          'cond': self.cond,
                                          'x': self.x,
                                          'y': self.y
                                      },
                                      fetch_list=fetch_list)
G
GaoWei8 已提交
120
                        assert np.array_equal(out[0], self.out)
121
                        if (x_stop_gradient is False):
G
GaoWei8 已提交
122 123
                            assert np.array_equal(out[2],
                                                  self.ref_x_backward(out[1]))
124
                            if (y.stop_gradient is False):
G
GaoWei8 已提交
125 126
                                assert np.array_equal(
                                    out[3], self.ref_y_backward(out[1]))
127
                        elif (y.stop_gradient is False):
G
GaoWei8 已提交
128 129
                            assert np.array_equal(out[2],
                                                  self.ref_y_backward(out[1]))
130 131 132 133 134 135

    def test_api_broadcast(self, use_cuda=False):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
136
            x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype('float32')
137 138
            y_i = np.array([[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0,
                                                   1.0]]).astype('float32')
139
            result = paddle.where((x > 1), x=x, y=y)
140
            for use_cuda in [False, True]:
141
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
142
                    return
143
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
144 145
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
146 147 148 149
                              feed={
                                  'x': x_i,
                                  'y': y_i
                              },
150
                              fetch_list=[result])
151
                assert np.array_equal(out[0], np.where((x_i > 1), x_i, y_i))
152

R
ronnywang 已提交
153 154 155 156 157
    def test_scalar(self):
        paddle.enable_static()
        main_program = Program()
        with fluid.program_guard(main_program):
            cond_shape = [2, 4]
158 159 160
            cond = fluid.layers.data(name='cond',
                                     shape=cond_shape,
                                     dtype='bool')
R
ronnywang 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
            x_data = 1.0
            y_data = 2.0
            cond_data = np.array([False, False, True, True]).astype('bool')
            result = paddle.where(condition=cond, x=x_data, y=y_data)
            for use_cuda in [False, True]:
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
                    return
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
                              feed={'cond': cond_data},
                              fetch_list=[result])
                expect = np.where(cond_data, x_data, y_data)
                assert np.array_equal(out[0], expect)

176 177 178 179
    def __test_where_with_broadcast_static(self, cond_shape, x_shape, y_shape):
        paddle.enable_static()
        main_program = Program()
        with fluid.program_guard(main_program):
180 181 182
            cond = fluid.layers.data(name='cond',
                                     shape=cond_shape,
                                     dtype='bool')
183 184
            x = fluid.layers.data(name='x', shape=x_shape, dtype='float32')
            y = fluid.layers.data(name='y', shape=y_shape, dtype='float32')
185 186 187 188
            cond_data_tmp = np.random.random(size=cond_shape).astype('float32')
            cond_data = (cond_data_tmp < 0.3)
            x_data = np.random.random(size=x_shape).astype('float32')
            y_data = np.random.random(size=y_shape).astype('float32')
189 190
            result = paddle.where(condition=cond, x=x, y=y)
            for use_cuda in [False, True]:
191
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
192
                    return
193
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
194
                exe = fluid.Executor(place)
195 196 197 198 199 200 201
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  'cond': cond_data,
                                  'x': x_data,
                                  'y': y_data
                              },
                              fetch_list=[result])
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
                expect = np.where(cond_data, x_data, y_data)
                assert np.array_equal(out[0], expect)

    def test_static_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

253 254

class TestWhereDygraphAPI(unittest.TestCase):
255

256 257
    def test_api(self):
        with fluid.dygraph.guard():
258 259 260
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float64')
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float64')
            cond_i = np.array([False, False, True, True]).astype('bool')
261 262 263
            x = fluid.dygraph.to_variable(x_i)
            y = fluid.dygraph.to_variable(y_i)
            cond = fluid.dygraph.to_variable(cond_i)
G
GaoWei8 已提交
264
            out = paddle.where(cond, x, y)
265 266
            assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))

R
ronnywang 已提交
267 268 269 270 271 272 273 274 275
    def test_scalar(self):
        with fluid.dygraph.guard():
            cond_i = np.array([False, False, True, True]).astype('bool')
            x = 1.0
            y = 2.0
            cond = fluid.dygraph.to_variable(cond_i)
            out = paddle.where(cond, x, y)
            assert np.array_equal(out.numpy(), np.where(cond_i, x, y))

276 277 278
    def __test_where_with_broadcast_dygraph(self, cond_shape, a_shape, b_shape):
        with fluid.dygraph.guard():
            cond_tmp = paddle.rand(cond_shape)
279
            cond = (cond_tmp < 0.3)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
            a = paddle.rand(a_shape)
            b = paddle.rand(b_shape)
            result = paddle.where(cond, a, b)
            result = result.numpy()
            expect = np.where(cond, a, b)
            self.assertTrue(np.array_equal(expect, result))

    def test_dygraph_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

R
ronnywang 已提交
335 336 337
    def test_where_condition(self):
        data = np.array([[True, False], [False, True]])
        with program_guard(Program(), Program()):
338
            x = fluid.layers.data(name='x', shape=[(-1), 2])
R
ronnywang 已提交
339 340 341 342 343
            y = paddle.where(x)
            self.assertEqual(type(y), tuple)
            self.assertEqual(len(y), 2)
            z = fluid.layers.concat(list(y), axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
344 345 346
            (res, ) = exe.run(feed={'x': data},
                              fetch_list=[z.name],
                              return_numpy=False)
R
ronnywang 已提交
347 348 349 350
        expect_out = np.array([[0, 0], [1, 1]])
        self.assertTrue(np.allclose(expect_out, np.array(res)))
        data = np.array([True, True, False])
        with program_guard(Program(), Program()):
351
            x = fluid.layers.data(name='x', shape=[(-1)])
R
ronnywang 已提交
352 353 354 355 356
            y = paddle.where(x)
            self.assertEqual(type(y), tuple)
            self.assertEqual(len(y), 1)
            z = fluid.layers.concat(list(y), axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
357 358 359
            (res, ) = exe.run(feed={'x': data},
                              fetch_list=[z.name],
                              return_numpy=False)
R
ronnywang 已提交
360 361 362
        expect_out = np.array([[0], [1]])
        self.assertTrue(np.allclose(expect_out, np.array(res)))

363 364 365 366 367 368 369 370 371 372 373 374
    def test_eager(self):
        with _test_eager_guard():
            self.test_api()
            self.test_dygraph_api_broadcast_1()
            self.test_dygraph_api_broadcast_2()
            self.test_dygraph_api_broadcast_3()
            self.test_dygraph_api_broadcast_4()
            self.test_dygraph_api_broadcast_5()
            self.test_dygraph_api_broadcast_6()
            self.test_dygraph_api_broadcast_7()
            self.test_dygraph_api_broadcast_8()

375 376

class TestWhereOpError(unittest.TestCase):
377

378 379
    def test_errors(self):
        with program_guard(Program(), Program()):
380 381 382
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float64')
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float64')
            cond_i = np.array([False, False, True, True]).astype('bool')
383 384

            def test_Variable():
G
GaoWei8 已提交
385
                paddle.where(cond_i, x_i, y_i)
386 387 388 389 390 391 392

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                x = fluid.layers.data(name='x', shape=[4], dtype='bool')
                y = fluid.layers.data(name='y', shape=[4], dtype='float16')
                cond = fluid.layers.data(name='cond', shape=[4], dtype='int32')
G
GaoWei8 已提交
393
                paddle.where(cond, x, y)
394 395 396

            self.assertRaises(TypeError, test_type)

R
ronnywang 已提交
397 398 399 400
    def test_value_error(self):
        with fluid.dygraph.guard():
            cond_shape = [2, 2, 4]
            cond_tmp = paddle.rand(cond_shape)
401
            cond = (cond_tmp < 0.3)
R
ronnywang 已提交
402 403 404
            a = paddle.rand(cond_shape)
            self.assertRaises(ValueError, paddle.where, cond, a)

405 406 407 408
    def test_eager(self):
        with _test_eager_guard():
            self.test_value_error()

409

H
hong 已提交
410 411
if __name__ == "__main__":
    paddle.enable_static()
412
    unittest.main()