test_nce.py 13.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
wanghaoshuang 已提交
17
import numpy as np
18 19 20 21
import unittest

import paddle.fluid as fluid
import paddle.fluid.initializer as initializer
22
from paddle.fluid import Program, program_guard
23

24
from op_test import OpTest
W
wanghaoshuang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41


def nce(input, weight, bias, sample_weight, labels, num_classes,
        num_sample_class):
    samples = []
    sample_labels = []
    batch_size = input.shape[0]
    num_true_class = labels.shape[1]
    for i in range(batch_size):
        w = 1 if sample_weight is None else sample_weight[i]
        for label in labels[i]:
            samples.append((i, label, True, w))
            sample_labels.append(label)
        for num in range(num_sample_class):
            samples.append((i, num, False, w))
            sample_labels.append(num)
    # forward bias
W
wanghaoshuang 已提交
42
    sample_out = np.zeros(len(samples)).astype(np.float32)
W
wanghaoshuang 已提交
43 44
    if bias is not None:
        for i in range(len(samples)):
W
wanghaoshuang 已提交
45
            sample_out[i] = bias[samples[i][1]]
W
wanghaoshuang 已提交
46 47
    # forward weight
    for i in range(len(samples)):
W
wanghaoshuang 已提交
48
        sample_out[i] += np.dot(input[samples[i][0]], weight[samples[i][1]])
W
wanghaoshuang 已提交
49 50

    # forward activation
W
wanghaoshuang 已提交
51
    sample_out = 1.0 / (1.0 + np.exp(-sample_out))
W
wanghaoshuang 已提交
52 53 54 55
    # forward cost
    out = np.zeros(batch_size).astype(np.float32)
    b = 1.0 / num_classes * num_sample_class
    for i in range(len(samples)):
W
wanghaoshuang 已提交
56
        o = sample_out[i]
W
wanghaoshuang 已提交
57 58
        cost = -np.log(o / (o + b)) if samples[i][2] else -np.log(b / (o + b))
        out[samples[i][0]] += cost * samples[i][3]
59 60 61
    return (out[:, np.newaxis],
            np.array(sample_out).reshape(batch_size,
                                         num_sample_class + num_true_class),
W
wanghaoshuang 已提交
62 63 64 65 66
            np.array(sample_labels).reshape(batch_size,
                                            num_sample_class + num_true_class))


class TestNCE(OpTest):
67

W
wanghaoshuang 已提交
68
    def generate_data(self, dim, batch_size, num_classes, num_true_class,
69
                      num_neg_samples, is_sparse):
W
wanghaoshuang 已提交
70 71 72 73
        input = np.random.randn(batch_size, dim).astype(np.float32)
        weight = np.random.randn(num_classes, dim).astype(np.float32)
        bias = np.random.randn(num_classes).astype(np.float32)
        sample_weight = np.random.randn(batch_size).astype(np.float32)
P
peizhilin 已提交
74 75
        labels = np.random.randint(0, num_classes,
                                   (batch_size, num_true_class)).astype("int64")
W
wanghaoshuang 已提交
76
        self.attrs = {
W
wanghaoshuang 已提交
77 78
            'num_total_classes': num_classes,
            'num_neg_samples': num_neg_samples,
79 80
            'custom_neg_classes': list(range(num_neg_samples)),
            'seed': 0,
81
            'sampler': 0,
P
pangyoki 已提交
82 83
            'is_sparse': is_sparse,
            'is_test': self.is_test
W
wanghaoshuang 已提交
84 85
        }
        self.inputs = {
W
wanghaoshuang 已提交
86
            'Input': input,
W
wanghaoshuang 已提交
87
            'Label': labels,
W
wanghaoshuang 已提交
88 89
            'Weight': weight,
            'Bias': bias,
W
wanghaoshuang 已提交
90 91 92
            'SampleWeight': sample_weight
        }

P
pangyoki 已提交
93 94 95
    def set_is_test(self):
        self.is_test = False

W
wanghaoshuang 已提交
96
    def set_data(self):
Z
zhupengyang 已提交
97
        self.generate_data(5, 25, 100, 1, 2, False)
W
wanghaoshuang 已提交
98 99

    def compute(self):
W
wanghaoshuang 已提交
100 101
        out = nce(self.inputs['Input'], self.inputs['Weight'],
                  self.inputs['Bias'], self.inputs['SampleWeight'],
W
wanghaoshuang 已提交
102 103
                  self.inputs['Label'], self.attrs['num_total_classes'],
                  self.attrs['num_neg_samples'])
P
pangyoki 已提交
104 105 106 107 108 109 110 111
        if self.is_test:
            self.outputs = {'Cost': out[0]}
        else:
            self.outputs = {
                'Cost': out[0],
                'SampleLogits': out[1],
                'SampleLabels': out[2]
            }
W
wanghaoshuang 已提交
112 113 114

    def setUp(self):
        self.op_type = 'nce'
P
pangyoki 已提交
115
        self.set_is_test()
W
wanghaoshuang 已提交
116 117 118 119 120 121 122
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
123 124 125
        self.check_grad(["Input", "Weight", "Bias"],
                        "Cost",
                        max_relative_error=0.02)
W
wanghaoshuang 已提交
126 127


128
class TestNCECase1Tensor(TestNCE):
129

W
wanghaoshuang 已提交
130
    def set_data(self):
Z
zhupengyang 已提交
131
        self.generate_data(10, 20, 100, 2, 5, False)
132 133


P
pangyoki 已提交
134 135 136 137 138 139 140 141 142
class TestNCETensorIsTest(TestNCE):
    # if is_test = True, there's no need to calculate grad
    def set_is_test(self):
        self.is_test = True

    def test_check_grad(self):
        pass


143
class TestNCECase1SelectedRows(unittest.TestCase):
144

145 146 147 148 149 150 151 152 153 154 155
    def setUp(self):
        self.base_lr = 0.0001
        self.batch_size = 8

    @staticmethod
    def get_place():
        place = fluid.core.CPUPlace()
        return place

    @staticmethod
    def get_train_data(batch_size):
T
tianshuo78520a 已提交
156
        batches = []
157 158 159
        for i in range(batch_size):
            input = np.random.randn(batch_size, 10).astype(np.float32)
            labels = np.random.randint(0, 20, (batch_size, 1))
T
tianshuo78520a 已提交
160 161
            batches.append([input, labels])
        return batches
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

    def get_optimizer(self):
        # SGD optimizer
        optimizer = fluid.optimizer.SGD(learning_rate=self.base_lr)
        return optimizer

    def train_network(self, num_total_classes, num_neg_samples, sampler,
                      custom_dist, is_sparse):
        input = fluid.layers.data(name="input", shape=[10], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")

        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 10],
            dtype='float32',
            name='nce_w',
            initializer=initializer.ConstantInitializer())
        b_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 1],
            dtype='float32',
            name='nce_b',
            initializer=initializer.ConstantInitializer())

        cost = fluid.layers.nce(input=input,
                                label=label,
                                num_total_classes=num_total_classes,
                                sampler=sampler,
                                custom_dist=custom_dist,
                                sample_weight=None,
                                param_attr='nce_w',
                                bias_attr='nce_b',
                                seed=1,
                                num_neg_samples=num_neg_samples,
                                is_sparse=is_sparse)
        avg_cost = fluid.layers.mean(cost)
        # optimizer
        optimizer = self.get_optimizer()
        optimizer.minimize(avg_cost)

        return [avg_cost, [input, label]]

    def test_input_is_selected_rows(self):
        place = self.get_place()
        exe = fluid.Executor(place)

        data = self.get_train_data(self.batch_size)
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

        rets = []
        # for dense
        dense_scope = fluid.core.Scope()
        dense_startup_program = fluid.framework.Program()
        dense_train_program = fluid.framework.Program()
        with fluid.scope_guard(dense_scope):
            with fluid.program_guard(dense_train_program,
                                     dense_startup_program):
                cost, feeds = self.train_network(20, 5, "custom_dist",
                                                 nid_freq_arr.tolist(), False)
                feeder = fluid.DataFeeder(feed_list=feeds, place=place)
                exe.run(dense_startup_program)
                loss_val = exe.run(dense_train_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[cost.name])
                rets.append(np.mean(loss_val))

        # for sparse
        sparse_scope = fluid.core.Scope()
        sparse_startup_program = fluid.framework.Program()
        sparse_train_program = fluid.framework.Program()
        with fluid.scope_guard(sparse_scope):
            with fluid.program_guard(sparse_train_program,
                                     sparse_startup_program):
                cost, feeds = self.train_network(20, 5, "custom_dist",
                                                 nid_freq_arr.tolist(), True)
                feeder = fluid.DataFeeder(feed_list=feeds, place=place)
                exe.run(sparse_startup_program)
                loss_val = exe.run(sparse_train_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[cost.name])
                rets.append(np.mean(loss_val))

        self.assertEqual(rets[0], rets[1])
W
wanghaoshuang 已提交
243 244


245
class TestNCE_OpError(unittest.TestCase):
246

247 248
    def test_errors(self):
        with program_guard(Program(), Program()):
249 250 251 252 253
            input1 = fluid.create_lod_tensor(np.array([0.0, 3.0, 2.0, 4.0]),
                                             [[1, 1, 2]], fluid.CPUPlace())
            label1 = fluid.layers.data(name='label1',
                                       shape=[-1, 4],
                                       dtype="int64")
254 255 256
            # the input(input) of nce layer must be Variable.
            self.assertRaises(TypeError, fluid.layers.nce, input1, label1, 5)

257 258 259 260 261
            input2 = fluid.layers.data(name='input2',
                                       shape=[-1, 4],
                                       dtype="float32")
            label2 = fluid.create_lod_tensor(np.array([0.0, 3.0, 2.0, 4.0]),
                                             [[1, 1, 2]], fluid.CPUPlace())
262 263 264
            # the input(label) of nce layer must be Variable.
            self.assertRaises(TypeError, fluid.layers.nce, input2, label2, 5)

265 266 267 268 269 270
            input3 = fluid.layers.data(name='input3',
                                       shape=[-1, 4],
                                       dtype="float16")
            label3 = fluid.layers.data(name='label3',
                                       shape=[-1, 1],
                                       dtype="int64")
271 272 273
            # the data type of input(input) must be float32 or float64.
            self.assertRaises(TypeError, fluid.layers.nce, input3, label3, 5)

274 275 276 277 278 279
            input4 = fluid.layers.data(name='input4',
                                       shape=[-1, 4],
                                       dtype="float32")
            label4 = fluid.layers.data(name='label4',
                                       shape=[-1, 1],
                                       dtype="int32")
280 281 282 283
            # the data type of input(label) must be int64.
            self.assertRaises(TypeError, fluid.layers.nce, input4, label4, 5)


284
class TestDygraphNCE_OpError(unittest.TestCase):
285

286 287 288
    def test_NCE_errors(self):
        with program_guard(Program(), Program()):
            nce = fluid.NCE(20, 5)
289 290 291 292 293
            input1 = fluid.create_lod_tensor(np.array([0.0, 3.0, 2.0, 4.0]),
                                             [[1, 1, 2]], fluid.CPUPlace())
            label1 = fluid.layers.data(name='label1',
                                       shape=[-1, 4],
                                       dtype="int64")
294 295 296
            # the input(input) of NCE layer must be Variable.
            self.assertRaises(TypeError, nce, input1, label1)

297 298 299 300 301
            input2 = fluid.layers.data(name='input2',
                                       shape=[-1, 4],
                                       dtype="float32")
            label2 = fluid.create_lod_tensor(np.array([0.0, 3.0, 2.0, 4.0]),
                                             [[1, 1, 2]], fluid.CPUPlace())
302 303 304
            # the input(label) of NCE layer must be Variable.
            self.assertRaises(TypeError, nce, input2, label2)

305 306 307 308 309 310
            input3 = fluid.layers.data(name='input3',
                                       shape=[-1, 4],
                                       dtype="float16")
            label3 = fluid.layers.data(name='label3',
                                       shape=[-1, 1],
                                       dtype="int64")
311 312 313
            # the data type of input(input) must be float32 or float64.
            self.assertRaises(TypeError, nce, input3, label3)

314 315 316 317 318 319
            input4 = fluid.layers.data(name='input4',
                                       shape=[-1, 4],
                                       dtype="float32")
            label4 = fluid.layers.data(name='label4',
                                       shape=[-1, 1],
                                       dtype="int32")
320 321 322
            # the data type of input(label) must be int64.
            self.assertRaises(TypeError, nce, input4, label4)

323 324 325 326 327 328
            input5 = fluid.layers.data(name='input5',
                                       shape=[-1, 4],
                                       dtype="float32")
            label5 = fluid.layers.data(name='label5',
                                       shape=[-1, 1],
                                       dtype="int64")
329 330 331 332 333 334
            sample_weight = fluid.create_lod_tensor(
                np.array([0.0, 3.0, 2.0, 4.0]), [[1, 1, 2]], fluid.CPUPlace())
            # the sample_weight of nce must be Variable or None.
            self.assertRaises(TypeError, nce, input5, label5, sample_weight)


W
wanghaoshuang 已提交
335 336
if __name__ == '__main__':
    unittest.main()