test_lamb_op.py 10.5 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
20 21
import paddle
import paddle.fluid as fluid
Y
Yibing Liu 已提交
22 23 24
from paddle.fluid import core
from paddle.fluid.op import Operator

25 26
paddle.enable_static()

Y
Yibing Liu 已提交
27 28

class TestLambOp1(OpTest):
29

Y
Yibing Liu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    def set_attrs(self):
        self.attrs = {
            'epsilon': 1e-4,
            'beta1': 0.78,
            'beta2': 0.836,
            'weight_decay': 0.01
        }

    def setUp(self):
        '''Test Lamb Op with supplied attributes
        '''
        self.op_type = "lamb"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
        self.set_attrs()
49 50
        beta1_pow = self.attrs['beta1']
        beta2_pow = self.attrs['beta2']
Y
Yibing Liu 已提交
51 52 53 54 55 56 57 58 59 60 61 62

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }


63 64
        param_out, moment1_out, moment2_out, \
            beta1_pow_out, beta2_pow_out = lamb_step(self.inputs, self.attrs)
Y
Yibing Liu 已提交
65 66 67 68

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
69 70 71
            'ParamOut': param_out,
            'Beta1PowOut': beta1_pow_out,
            'Beta2PowOut': beta2_pow_out
Y
Yibing Liu 已提交
72 73 74 75 76 77 78
        }

    def test_check_output(self):
        self.check_output()


class TestLambOp2(TestLambOp1):
79

Y
Yibing Liu 已提交
80 81 82 83 84 85 86 87 88 89
    def set_attrs(self):
        self.attrs = {
            'epsilon': 1e-8,
            'beta1': 0.9,
            'beta2': 0.999,
            'weight_decay': 0.01
        }


class TestLambOpMultipleSteps(TestLambOp1):
90

Y
Yibing Liu 已提交
91 92 93 94 95 96 97 98 99 100
    def set_attrs(self):
        self.attrs = {
            'epsilon': 1e-8,
            'beta1': 0.9,
            'beta2': 0.999,
            'weight_decay': 0.01
        }
        self.num_steps = 10

    def test_check_output(self):
101 102 103
        for i in range(self.num_steps):
            param_out, moment1_out, moment2_out, \
                beta1_pow_out, beta2_pow_out = lamb_step(self.inputs, self.attrs)
Y
Yibing Liu 已提交
104 105 106 107

            self.outputs = {
                'Moment1Out': moment1_out,
                'Moment2Out': moment2_out,
108 109 110
                'ParamOut': param_out,
                'Beta1PowOut': beta1_pow_out,
                'Beta2PowOut': beta2_pow_out
Y
Yibing Liu 已提交
111 112 113 114 115 116 117 118 119 120 121
            }

            # Verify output for this step
            self.check_output()

            # Output of this step becomes input for next step
            self.inputs['Param'] = param_out
            self.inputs['Moment1'] = moment1_out
            self.inputs['Moment2'] = moment2_out

            # Update powers of Beta1 and Beta2 for next time step
122 123
            self.inputs['Beta1Pow'] = beta1_pow_out
            self.inputs['Beta2Pow'] = beta2_pow_out
Y
Yibing Liu 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

            # Randomize gradient for next step
            self.inputs['Grad'] = np.random.uniform(
                -1, 1, (102, 105)).astype("float32")


def lamb_step(inputs, attributes):
    '''
    Simulate one step of the lamb optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']
    weight_decay = attributes['weight_decay']

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)

154 155 156
    moment1_unbiased = moment1_out / (1 - beta1_pow)
    moment2_unbiased = moment2_out / (1 - beta2_pow)

Y
Yibing Liu 已提交
157
    r_1 = np.linalg.norm(param)
158 159 160
    r_2 = np.linalg.norm(moment1_unbiased /
                         (np.sqrt(moment2_unbiased) + epsilon) +
                         weight_decay * param)
Y
Yibing Liu 已提交
161 162
    lr_t = lr * r_1 / r_2

163 164 165
    param_out = param - lr_t * (moment1_unbiased /
                                (np.sqrt(moment2_unbiased) + epsilon) +
                                weight_decay * param)
166 167 168 169 170

    beta1_pow_out = beta1_pow * beta1
    beta2_pow_out = beta2_pow * beta2

    return param_out, moment1_out, moment2_out, beta1_pow_out, beta2_pow_out
Y
Yibing Liu 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196


def lamb_step_sparse(inputs, attributes, height, rows, row_numel, np_grad):
    '''
    Simulate one step of the lamb optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    # grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']
    weight_decay = attributes['weight_decay']

    moment1_out = np.zeros(shape=[height, row_numel])
    moment2_out = np.zeros(shape=[height, row_numel])
    param_out = np.zeros(shape=[height, row_numel])
197 198
    moment1_unbiased = np.zeros(shape=[height, row_numel])
    moment2_unbiased = np.zeros(shape=[height, row_numel])
Y
Yibing Liu 已提交
199 200

    def update_mom(row_id, update_value):
201 202
        moment1_out[row_id] = beta1 * moment1[row_id] + (1 -
                                                         beta1) * update_value
Y
Yibing Liu 已提交
203 204 205
        moment2_out[row_id] = beta2 * moment2[row_id] + (
            1 - beta2) * np.square(update_value)

206 207
        moment1_out[row_id] = beta1 * moment1[row_id] + (1 -
                                                         beta1) * update_value
Y
Yibing Liu 已提交
208 209 210 211 212
        moment2_out[row_id] = beta2 * moment2[row_id] + (
            1 - beta2) * np.square(update_value)

    def update_param():
        r_1 = np.linalg.norm(param)
Y
Yibing Liu 已提交
213
        r_2 = np.linalg.norm(moment1_out / (np.sqrt(moment2_out) + epsilon) +
Y
Yibing Liu 已提交
214 215 216
                             weight_decay * param)
        lr_t = lr * r_1 / r_2

217 218 219
        param_out = param - lr_t * (moment1_out /
                                    (np.sqrt(moment2_out) + epsilon) +
                                    weight_decay * param)
Y
Yibing Liu 已提交
220 221 222 223 224 225 226 227

    for row_id in range(param_out.shape[0]):
        update_value = np.zeros(np_grad[0].shape).astype("float32")
        if row_id in rows:
            update_value = np_grad[rows.index(row_id)]
        update_mom(row_id, update_value)

    update_param()
228 229
    beta1_pow_out = beta1_pow * beta1
    beta2_pow_out = beta2_pow * beta2
Y
Yibing Liu 已提交
230

231
    return param_out, moment1_out, moment2_out, beta1_pow_out, beta2_pow_out
Y
Yibing Liu 已提交
232 233 234


class TestSparseLambOp(unittest.TestCase):
235

Y
Yibing Liu 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249
    def setup(self, scope, place):
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4

        height = 10
        rows = [0, 4, 7]
        self.rows = rows
        row_numel = 12
        self.row_numel = row_numel
        self.dense_inputs = {
            "Param": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment1": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment2": np.full((height, row_numel), 5.0).astype("float32"),
250 251
            'Beta1Pow': np.array([beta1]).astype("float32"),
            'Beta2Pow': np.array([beta2]).astype("float32"),
Y
Yibing Liu 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
            "LearningRate": np.full((1), 2.0).astype("float32")
        }
        self.init_output = np.full((height, row_numel), 0.0).astype("float32")
        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            'weight_decay': 0.05
        }

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        self.sparse_inputs = ["Grad"]

274
        param_out, mom1, mom2, beta1_pow_out, beta2_pow_out = lamb_step_sparse(
Y
Yibing Liu 已提交
275 276 277 278
            self.dense_inputs, self.attrs, height, rows, row_numel, np_array)
        self.outputs = {
            "ParamOut": param_out,
            "Moment1Out": mom1,
279 280 281
            "Moment2Out": mom2,
            'Beta1PowOut': beta1_pow_out,
            'Beta2PowOut': beta2_pow_out
Y
Yibing Liu 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        }

    def check_with_place(self, place):
        scope = core.Scope()
        self.setup(scope, place)

        op_args = dict()
        for key, np_array in self.dense_inputs.items():
            var = scope.var(key).get_tensor()
            var.set(np_array, place)
            op_args[key] = key
        for s in self.sparse_inputs:
            op_args[s] = s
        for s in self.outputs:
            var = scope.var(s).get_tensor()
            var.set(self.init_output, place)
            op_args[s] = s
        for k in self.attrs:
            op_args[k] = self.attrs[k]

        # create and run sgd operator
        lamb_op = Operator("lamb", **op_args)
        lamb_op.run(scope, place)

        for key, np_array in self.outputs.items():
            out_var = scope.var(key).get_tensor()
            actual = np.array(out_var)
            actual = actual.reshape([actual.size])
            np_array = np_array.reshape([np_array.size])

            for i in range(np_array.size):
                self.assertLess((actual[i] - np_array[i]), 0.00001)

    def test_sparse_lamb(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


if __name__ == "__main__":
    unittest.main()