test_deform_conv2d.py 20.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn.functional as F
import paddle.nn.initializer as I
import numpy as np
import unittest
20
from paddle.fluid.framework import _test_eager_guard
21 22 23 24 25
from unittest import TestCase


class TestDeformConv2D(TestCase):
    batch_size = 4
26
    spatial_shape = (5, 5)
27 28 29
    dtype = "float32"

    def setUp(self):
30
        self.in_channels = 2
31 32 33 34 35
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [0, 0]
        self.stride = [1, 1]
        self.dilation = [1, 1]
36
        self.deformable_groups = 1
37 38 39 40
        self.groups = 1
        self.no_bias = True

    def prepare(self):
41 42
        np.random.seed(1)
        paddle.seed(1)
43 44 45 46 47 48 49
        if isinstance(self.kernel_size, int):
            filter_shape = (self.kernel_size, ) * 2
        else:
            filter_shape = tuple(self.kernel_size)
        self.filter_shape = filter_shape

        self.weight = np.random.uniform(
50 51
            -1, 1, (self.out_channels, self.in_channels // self.groups) +
            filter_shape).astype(self.dtype)
52
        if not self.no_bias:
53 54
            self.bias = np.random.uniform(-1, 1, (self.out_channels, )).astype(
                self.dtype)
55 56 57 58 59 60 61 62 63 64 65 66 67 68

        def out_size(in_size, pad_size, dilation_size, kernel_size,
                     stride_size):
            return (in_size + 2 * pad_size -
                    (dilation_size * (kernel_size - 1) + 1)) / stride_size + 1

        out_h = int(
            out_size(self.spatial_shape[0], self.padding[0], self.dilation[0],
                     self.kernel_size[0], self.stride[0]))
        out_w = int(
            out_size(self.spatial_shape[1], self.padding[1], self.dilation[1],
                     self.kernel_size[1], self.stride[1]))
        out_shape = (out_h, out_w)

69 70
        self.input_shape = (self.batch_size,
                            self.in_channels) + self.spatial_shape
71

72 73
        self.offset_shape = (self.batch_size, self.deformable_groups * 2 *
                             filter_shape[0] * filter_shape[1]) + out_shape
74

75 76
        self.mask_shape = (self.batch_size, self.deformable_groups *
                           filter_shape[0] * filter_shape[1]) + out_shape
77 78 79 80 81 82 83 84 85 86 87 88 89 90

        self.input = np.random.uniform(-1, 1,
                                       self.input_shape).astype(self.dtype)

        self.offset = np.random.uniform(-1, 1,
                                        self.offset_shape).astype(self.dtype)

        self.mask = np.random.uniform(-1, 1, self.mask_shape).astype(self.dtype)

    def static_graph_case_dcn(self):
        main = paddle.static.Program()
        start = paddle.static.Program()
        paddle.enable_static()
        with paddle.static.program_guard(main, start):
91 92
            x = paddle.static.data("input", (-1, self.in_channels, -1, -1),
                                   dtype=self.dtype)
93
            offset = paddle.static.data(
94 95
                "offset", (-1, self.deformable_groups * 2 *
                           self.filter_shape[0] * self.filter_shape[1], -1, -1),
96 97
                dtype=self.dtype)
            mask = paddle.static.data(
98 99
                "mask", (-1, self.deformable_groups * self.filter_shape[0] *
                         self.filter_shape[1], -1, -1),
100 101 102 103 104 105 106 107 108 109 110 111
                dtype=self.dtype)

            y_v1 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=None,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
112
                deformable_groups=self.deformable_groups,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias),
                modulated=False)

            y_v2 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=mask,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
128
                deformable_groups=self.deformable_groups,
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias))

        exe = paddle.static.Executor(self.place)
        exe.run(start)
        out_v1, out_v2 = exe.run(main,
                                 feed={
                                     "input": self.input,
                                     "offset": self.offset,
                                     "mask": self.mask
                                 },
                                 fetch_list=[y_v1, y_v2])
        return out_v1, out_v2

    def dygraph_case_dcn(self):
        paddle.disable_static()
        x = paddle.to_tensor(self.input)
        offset = paddle.to_tensor(self.offset)
        mask = paddle.to_tensor(self.mask)

        bias = None if self.no_bias else paddle.to_tensor(self.bias)

        deform_conv2d = paddle.vision.ops.DeformConv2D(
            in_channels=self.in_channels,
            out_channels=self.out_channels,
            kernel_size=self.kernel_size,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
159
            deformable_groups=self.deformable_groups,
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            groups=self.groups,
            weight_attr=I.Assign(self.weight),
            bias_attr=False if self.no_bias else I.Assign(self.bias))

        y_v1 = deform_conv2d(x, offset)
        y_v2 = deform_conv2d(x, offset, mask)

        out_v1 = y_v1.numpy()
        out_v2 = y_v2.numpy()

        return out_v1, out_v2

    def _test_identity(self):
        self.prepare()
        static_dcn_v1, static_dcn_v2 = self.static_graph_case_dcn()
        dy_dcn_v1, dy_dcn_v2 = self.dygraph_case_dcn()
        np.testing.assert_array_almost_equal(static_dcn_v1, dy_dcn_v1)
        np.testing.assert_array_almost_equal(static_dcn_v2, dy_dcn_v2)

    def test_identity(self):
        self.place = paddle.CPUPlace()
        self._test_identity()

        if paddle.is_compiled_with_cuda():
            self.place = paddle.CUDAPlace(0)
            self._test_identity()

187 188 189 190
    def test_identity_with_eager_guard(self):
        with _test_eager_guard():
            self.test_identity()

191 192 193

class TestDeformConv2DFunctional(TestCase):
    batch_size = 4
194
    spatial_shape = (5, 5)
195 196 197
    dtype = "float32"

    def setUp(self):
198
        self.in_channels = 2
199 200 201 202 203
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [0, 0]
        self.stride = [1, 1]
        self.dilation = [1, 1]
204
        self.deformable_groups = 1
205 206 207 208
        self.groups = 1
        self.no_bias = True

    def prepare(self):
209 210
        np.random.seed(1)
        paddle.seed(1)
211 212 213 214 215 216 217
        if isinstance(self.kernel_size, int):
            filter_shape = (self.kernel_size, ) * 2
        else:
            filter_shape = tuple(self.kernel_size)
        self.filter_shape = filter_shape

        self.weight = np.random.uniform(
218 219
            -1, 1, (self.out_channels, self.in_channels // self.groups) +
            filter_shape).astype(self.dtype)
220
        if not self.no_bias:
221 222
            self.bias = np.random.uniform(-1, 1, (self.out_channels, )).astype(
                self.dtype)
223 224 225 226 227 228 229 230 231 232 233 234 235 236

        def out_size(in_size, pad_size, dilation_size, kernel_size,
                     stride_size):
            return (in_size + 2 * pad_size -
                    (dilation_size * (kernel_size - 1) + 1)) / stride_size + 1

        out_h = int(
            out_size(self.spatial_shape[0], self.padding[0], self.dilation[0],
                     self.kernel_size[0], self.stride[0]))
        out_w = int(
            out_size(self.spatial_shape[1], self.padding[1], self.dilation[1],
                     self.kernel_size[1], self.stride[1]))
        out_shape = (out_h, out_w)

237 238
        self.input_shape = (self.batch_size,
                            self.in_channels) + self.spatial_shape
239

240 241
        self.offset_shape = (self.batch_size, self.deformable_groups * 2 *
                             filter_shape[0] * filter_shape[1]) + out_shape
242

243 244
        self.mask_shape = (self.batch_size, self.deformable_groups *
                           filter_shape[0] * filter_shape[1]) + out_shape
245 246 247 248 249 250 251 252 253 254 255 256 257 258

        self.input = np.random.uniform(-1, 1,
                                       self.input_shape).astype(self.dtype)

        self.offset = np.random.uniform(-1, 1,
                                        self.offset_shape).astype(self.dtype)

        self.mask = np.random.uniform(-1, 1, self.mask_shape).astype(self.dtype)

    def static_graph_case_dcn(self):
        main = paddle.static.Program()
        start = paddle.static.Program()
        paddle.enable_static()
        with paddle.static.program_guard(main, start):
259 260
            x = paddle.static.data("input", (-1, self.in_channels, -1, -1),
                                   dtype=self.dtype)
261
            offset = paddle.static.data(
262 263
                "offset", (-1, self.deformable_groups * 2 *
                           self.filter_shape[0] * self.filter_shape[1], -1, -1),
264 265
                dtype=self.dtype)
            mask = paddle.static.data(
266 267
                "mask", (-1, self.deformable_groups * self.filter_shape[0] *
                         self.filter_shape[1], -1, -1),
268 269 270 271 272 273 274 275 276 277 278 279
                dtype=self.dtype)

            y_v1 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=None,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
280
                deformable_groups=self.deformable_groups,
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias),
                modulated=False)

            y_v2 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=mask,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
296
                deformable_groups=self.deformable_groups,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias))

        exe = paddle.static.Executor(self.place)
        exe.run(start)
        out_v1, out_v2 = exe.run(main,
                                 feed={
                                     "input": self.input,
                                     "offset": self.offset,
                                     "mask": self.mask
                                 },
                                 fetch_list=[y_v1, y_v2])
        return out_v1, out_v2

    def dygraph_case_dcn(self):
        paddle.disable_static()
        x = paddle.to_tensor(self.input)
        offset = paddle.to_tensor(self.offset)
        mask = paddle.to_tensor(self.mask)
        weight = paddle.to_tensor(self.weight)
        bias = None if self.no_bias else paddle.to_tensor(self.bias)

        y_v1 = paddle.vision.ops.deform_conv2d(
            x=x,
            offset=offset,
            weight=weight,
            bias=bias,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
328
            deformable_groups=self.deformable_groups,
329 330
            groups=self.groups,
        )
331 332 333 334 335 336 337 338 339 340

        y_v2 = paddle.vision.ops.deform_conv2d(
            x=x,
            offset=offset,
            mask=mask,
            weight=weight,
            bias=bias,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
341
            deformable_groups=self.deformable_groups,
342 343
            groups=self.groups,
        )
344 345 346 347 348 349 350 351 352 353 354

        out_v1 = y_v1.numpy()
        out_v2 = y_v2.numpy()

        return out_v1, out_v2

    def new_api_static_graph_case_dcn(self):
        main = paddle.static.Program()
        start = paddle.static.Program()
        paddle.enable_static()
        with paddle.static.program_guard(main, start):
355 356
            x = paddle.static.data("input", (-1, self.in_channels, -1, -1),
                                   dtype=self.dtype)
357
            offset = paddle.static.data(
358 359
                "offset", (-1, self.deformable_groups * 2 *
                           self.filter_shape[0] * self.filter_shape[1], -1, -1),
360 361
                dtype=self.dtype)
            mask = paddle.static.data(
362 363
                "mask", (-1, self.deformable_groups * self.filter_shape[0] *
                         self.filter_shape[1], -1, -1),
364 365
                dtype=self.dtype)

366 367 368
            weight = paddle.static.data("weight",
                                        list(self.weight.shape),
                                        dtype=self.dtype)
369 370 371 372 373 374 375 376 377 378 379 380

            if not self.no_bias:
                bias = paddle.static.data("bias", [-1], dtype=self.dtype)

            y_v1 = paddle.vision.ops.deform_conv2d(
                x=x,
                offset=offset,
                weight=weight,
                bias=None if self.no_bias else bias,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
381
                deformable_groups=self.deformable_groups,
382 383
                groups=self.groups,
            )
384 385 386 387 388 389 390 391 392 393

            y_v2 = paddle.vision.ops.deform_conv2d(
                x=x,
                offset=offset,
                mask=mask,
                weight=weight,
                bias=None if self.no_bias else bias,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
394
                deformable_groups=self.deformable_groups,
395 396
                groups=self.groups,
            )
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

        exe = paddle.static.Executor(self.place)
        exe.run(start)
        feed_dict = {
            "input": self.input,
            "offset": self.offset,
            "mask": self.mask,
            "weight": self.weight
        }
        if not self.no_bias:
            feed_dict["bias"] = self.bias

        out_v1, out_v2 = exe.run(main, feed=feed_dict, fetch_list=[y_v1, y_v2])
        return out_v1, out_v2

    def _test_identity(self):
        self.prepare()
        static_dcn_v1, static_dcn_v2 = self.static_graph_case_dcn()
        dy_dcn_v1, dy_dcn_v2 = self.dygraph_case_dcn()
        new_static_dcn_v1, new_static_dcn_v2 = self.new_api_static_graph_case_dcn(
        )
        np.testing.assert_array_almost_equal(static_dcn_v1, dy_dcn_v1)
        np.testing.assert_array_almost_equal(static_dcn_v2, dy_dcn_v2)
        np.testing.assert_array_almost_equal(static_dcn_v1, new_static_dcn_v1)
        np.testing.assert_array_almost_equal(static_dcn_v2, new_static_dcn_v2)

    def test_identity(self):
        self.place = paddle.CPUPlace()
        self._test_identity()

        if paddle.is_compiled_with_cuda():
            self.place = paddle.CUDAPlace(0)
            self._test_identity()

431 432 433 434
    def test_identity_with_eager_guard(self):
        with _test_eager_guard():
            self.test_identity()

435 436 437

# testcases for DeformConv2D
class TestDeformConv2DWithPadding(TestDeformConv2D):
438

439 440 441 442 443 444 445
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
446
        self.deformable_groups = 1
447 448 449 450 451
        self.groups = 1
        self.no_bias = True


class TestDeformConv2DWithBias(TestDeformConv2D):
452

453 454 455 456 457 458 459
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
460
        self.deformable_groups = 1
461 462 463 464 465
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithAsynPadding(TestDeformConv2D):
466

467 468 469 470 471 472 473
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
474
        self.deformable_groups = 1
475 476 477 478 479
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithDilation(TestDeformConv2D):
480

481 482 483 484 485 486 487
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [3, 3]
488
        self.deformable_groups = 1
489 490 491 492 493
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithStride(TestDeformConv2D):
494

495 496 497 498 499 500 501
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
502 503 504 505 506 507
        self.deformable_groups = 1
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithDeformable_Groups(TestDeformConv2D):
508

509 510 511 512 513 514 515 516
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
        self.deformable_groups = 5
517 518 519 520 521
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DWithGroups(TestDeformConv2D):
522

523 524 525 526 527 528 529
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
530
        self.deformable_groups = 1
531 532 533 534 535 536
        self.groups = 5
        self.no_bias = False


# testcases for deform_conv2d
class TestDeformConv2DFunctionalWithPadding(TestDeformConv2DFunctional):
537

538 539 540 541 542 543 544
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
545
        self.deformable_groups = 1
546 547 548 549 550
        self.groups = 1
        self.no_bias = True


class TestDeformConv2DFunctionalWithBias(TestDeformConv2DFunctional):
551

552 553 554 555 556 557 558
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [2, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
559
        self.deformable_groups = 1
560 561 562 563 564
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithAsynPadding(TestDeformConv2DFunctional):
565

566 567 568 569 570 571 572
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 2]
        self.stride = [1, 1]
        self.dilation = [1, 1]
573
        self.deformable_groups = 1
574 575 576 577 578
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithDilation(TestDeformConv2DFunctional):
579

580 581 582 583 584 585 586
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [3, 3]
587
        self.deformable_groups = 1
588 589 590 591 592
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithStride(TestDeformConv2DFunctional):
593

594 595 596 597 598 599 600
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
601 602 603 604 605
        self.deformable_groups = 1
        self.groups = 1
        self.no_bias = False


606 607 608
class TestDeformConv2DFunctionalWithDeformable_Groups(TestDeformConv2DFunctional
                                                      ):

609 610 611 612 613 614 615 616
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
        self.deformable_groups = 5
617 618 619 620 621
        self.groups = 1
        self.no_bias = False


class TestDeformConv2DFunctionalWithGroups(TestDeformConv2DFunctional):
622

623 624 625 626 627 628 629
    def setUp(self):
        self.in_channels = 5
        self.out_channels = 5
        self.kernel_size = [3, 3]
        self.padding = [1, 1]
        self.stride = [1, 1]
        self.dilation = [1, 1]
630
        self.deformable_groups = 1
631 632 633 634 635 636
        self.groups = 5
        self.no_bias = False


if __name__ == "__main__":
    unittest.main()