dist_text_classification.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
import six
import tarfile
import string
import re
from functools import reduce
from test_dist_base import TestDistRunnerBase, runtime_main

DTYPE = "float32"
VOCAB_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/imdb.vocab'
VOCAB_MD5 = '23c86a0533c0151b6f12fa52b106dcc2'
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/text_classification.tar.gz'
DATA_MD5 = '29ebfc94f11aea9362bbb7f5e9d86b8a'


# Load dictionary.
def load_vocab(filename):
    vocab = {}
T
tianshuo78520a 已提交
47 48 49
    with open(filename, 'r', encoding="utf-8") as f:
        for idx, line in enumerate(f):
            vocab[line.strip()] = idx
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    return vocab


def get_worddict(dict_path):
    word_dict = load_vocab(dict_path)
    word_dict["<unk>"] = len(word_dict)
    dict_dim = len(word_dict)
    return word_dict, dict_dim


def conv_net(input,
             dict_dim,
             emb_dim=128,
             window_size=3,
             num_filters=128,
             fc0_dim=96,
             class_dim=2):
    emb = fluid.layers.embedding(
        input=input,
        size=[dict_dim, emb_dim],
        is_sparse=False,
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
            value=0.01)))

    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=num_filters,
        filter_size=window_size,
        act="tanh",
        pool_type="max",
80 81
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
            value=0.01)))
82 83 84 85

    fc_0 = fluid.layers.fc(
        input=[conv_3],
        size=fc0_dim,
86 87
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
            value=0.01)))
88 89 90 91 92

    prediction = fluid.layers.fc(
        input=[fc_0],
        size=class_dim,
        act="softmax",
93 94
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
            value=0.01)))
95 96 97 98 99

    return prediction


def inference_network(dict_dim):
100 101 102 103
    data = fluid.layers.data(name="words",
                             shape=[1],
                             dtype="int64",
                             lod_level=1)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    out = conv_net(data, dict_dim)
    return out


def get_reader(word_dict, batch_size):
    # The training data set.
    train_reader = paddle.batch(train(word_dict), batch_size=batch_size)

    # The testing data set.
    test_reader = paddle.batch(test(word_dict), batch_size=batch_size)

    return train_reader, test_reader


def get_optimizer(learning_rate):
    optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
    return optimizer


class TestDistTextClassification2x2(TestDistRunnerBase):
124

125 126 127 128 129 130
    def get_model(self, batch_size=2):
        vocab = os.path.join(paddle.dataset.common.DATA_HOME,
                             "text_classification", "imdb.vocab")
        word_dict, dict_dim = get_worddict(vocab)

        # Input data
131 132 133 134
        data = fluid.layers.data(name="words",
                                 shape=[1],
                                 dtype="int64",
                                 lod_level=1)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        # Train program
        predict = conv_net(data, dict_dim)
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)
        acc = fluid.layers.accuracy(input=predict, label=label)
        inference_program = fluid.default_main_program().clone()

        # Optimization
        opt = get_optimizer(learning_rate=0.001)
        opt.minimize(avg_cost)

        # Reader
        train_reader, test_reader = get_reader(word_dict, batch_size)

        return inference_program, avg_cost, train_reader, test_reader, acc, predict


def tokenize(pattern):
    """
    Read files that match the given pattern.  Tokenize and yield each file.
    """

    with tarfile.open(
            paddle.dataset.common.download(DATA_URL, 'text_classification',
                                           DATA_MD5)) as tarf:
        # Note that we should use tarfile.next(), which does
        # sequential access of member files, other than
        # tarfile.extractfile, which does random access and might
        # destroy hard disks.
        tf = tarf.next()
        while tf != None:
            if bool(pattern.match(tf.name)):
                # newline and punctuations removal and ad-hoc tokenization.
170 171 172
                yield tarf.extractfile(tf).read().rstrip(
                    six.b("\n\r")).translate(None, six.b(
                        string.punctuation)).lower().split()
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            tf = tarf.next()


def reader_creator(pos_pattern, neg_pattern, word_idx):
    UNK = word_idx['<unk>']
    INS = []

    def load(pattern, out, label):
        for doc in tokenize(pattern):
            out.append(([word_idx.get(w, UNK) for w in doc], label))

    load(pos_pattern, INS, 0)
    load(neg_pattern, INS, 1)

    def reader():
        for doc, label in INS:
            yield doc, label

    return reader


def train(word_idx):
    """
    IMDB training set creator.

    It returns a reader creator, each sample in the reader is an zero-based ID
    sequence and label in [0, 1].

    :param word_idx: word dictionary
    :type word_idx: dict
    :return: Training reader creator
    :rtype: callable
    """
206 207
    return reader_creator(re.compile(r"train/pos/.*\.txt$"),
                          re.compile(r"train/neg/.*\.txt$"), word_idx)
208 209 210 211 212 213 214 215 216 217 218 219 220 221


def test(word_idx):
    """
    IMDB test set creator.

    It returns a reader creator, each sample in the reader is an zero-based ID
    sequence and label in [0, 1].

    :param word_idx: word dictionary
    :type word_idx: dict
    :return: Test reader creator
    :rtype: callable
    """
222 223
    return reader_creator(re.compile(r"test/pos/.*\.txt$"),
                          re.compile(r"test/neg/.*\.txt$"), word_idx)
224 225 226 227 228 229


if __name__ == "__main__":
    paddle.dataset.common.download(VOCAB_URL, 'text_classification', VOCAB_MD5)
    paddle.dataset.common.download(DATA_URL, 'text_classification', DATA_MD5)
    runtime_main(TestDistTextClassification2x2)