test_machine_translation.py 12.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
Y
Yang Yu 已提交
16
import contextlib
D
dzhwinter 已提交
17

Y
Yan Chunwei 已提交
18
import numpy as np
19
import paddle
20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as pd
from paddle.fluid.executor import Executor
Y
Yang Yu 已提交
24
import unittest
武毅 已提交
25
import os
Y
Yan Chunwei 已提交
26

P
pangyoki 已提交
27 28
paddle.enable_static()

Y
Yan Chunwei 已提交
29 30
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
Q
Qiao Longfei 已提交
31 32
hidden_dim = 32
word_dim = 16
Q
Qiao Longfei 已提交
33 34
batch_size = 2
max_length = 8
Y
Yan Chunwei 已提交
35 36
topk_size = 50
trg_dic_size = 10000
Q
Qiao Longfei 已提交
37
beam_size = 2
Y
Yan Chunwei 已提交
38

Q
Qiao Longfei 已提交
39 40 41
decoder_size = hidden_dim


Y
Yang Yu 已提交
42
def encoder(is_sparse):
Q
Qiao Longfei 已提交
43
    # encoder
44 45 46 47 48 49 50 51 52
    src_word_id = pd.data(name="src_word_id",
                          shape=[1],
                          dtype='int64',
                          lod_level=1)
    src_embedding = pd.embedding(input=src_word_id,
                                 size=[dict_size, word_dim],
                                 dtype='float32',
                                 is_sparse=is_sparse,
                                 param_attr=fluid.ParamAttr(name='vemb'))
Q
Qiao Longfei 已提交
53

Q
Qiao Longfei 已提交
54 55 56 57 58
    fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = pd.sequence_last_step(input=lstm_hidden0)
    return encoder_out

Q
Qiao Longfei 已提交
59

Y
Yang Yu 已提交
60
def decoder_train(context, is_sparse):
Q
Qiao Longfei 已提交
61
    # decoder
62 63 64 65 66 67 68 69 70
    trg_language_word = pd.data(name="target_language_word",
                                shape=[1],
                                dtype='int64',
                                lod_level=1)
    trg_embedding = pd.embedding(input=trg_language_word,
                                 size=[dict_size, word_dim],
                                 dtype='float32',
                                 is_sparse=is_sparse,
                                 param_attr=fluid.ParamAttr(name='vemb'))
Q
Qiao Longfei 已提交
71

Q
Qiao Longfei 已提交
72
    rnn = pd.DynamicRNN()
Q
Qiao Longfei 已提交
73 74
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
Q
Qiao Longfei 已提交
75 76
        pre_state = rnn.memory(init=context)
        current_state = pd.fc(input=[current_word, pre_state],
Q
Qiao Longfei 已提交
77 78
                              size=decoder_size,
                              act='tanh')
Q
Qiao Longfei 已提交
79 80 81 82 83 84

        current_score = pd.fc(input=current_state,
                              size=target_dict_dim,
                              act='softmax')
        rnn.update_memory(pre_state, current_state)
        rnn.output(current_score)
Q
Qiao Longfei 已提交
85 86

    return rnn()
Y
Yan Chunwei 已提交
87 88


Y
Yang Yu 已提交
89
def decoder_decode(context, is_sparse):
Q
Qiao Longfei 已提交
90 91
    init_state = context
    array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
Y
Yang Yu 已提交
92
    counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)
Q
Qiao Longfei 已提交
93 94 95 96 97 98 99 100 101 102

    # fill the first element with init_state
    state_array = pd.create_array('float32')
    pd.array_write(init_state, array=state_array, i=counter)

    # ids, scores as memory
    ids_array = pd.create_array('int64')
    scores_array = pd.create_array('float32')

    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
103 104 105 106
    init_scores = pd.data(name="init_scores",
                          shape=[1],
                          dtype="float32",
                          lod_level=2)
Q
Qiao Longfei 已提交
107 108 109 110 111 112 113 114 115 116 117 118

    pd.array_write(init_ids, array=ids_array, i=counter)
    pd.array_write(init_scores, array=scores_array, i=counter)

    cond = pd.less_than(x=counter, y=array_len)

    while_op = pd.While(cond=cond)
    with while_op.block():
        pre_ids = pd.array_read(array=ids_array, i=counter)
        pre_state = pd.array_read(array=state_array, i=counter)
        pre_score = pd.array_read(array=scores_array, i=counter)

119
        # expand the recursive_sequence_lengths of pre_state to be the same with pre_score
Q
Qiao Longfei 已提交
120 121
        pre_state_expanded = pd.sequence_expand(pre_state, pre_score)

122 123 124 125
        pre_ids_emb = pd.embedding(input=pre_ids,
                                   size=[dict_size, word_dim],
                                   dtype='float32',
                                   is_sparse=is_sparse)
Q
Qiao Longfei 已提交
126 127

        # use rnn unit to update rnn
128
        current_state = pd.fc(input=[pre_state_expanded, pre_ids_emb],
Q
Qiao Longfei 已提交
129 130
                              size=decoder_size,
                              act='tanh')
131
        current_state_with_lod = pd.lod_reset(x=current_state, y=pre_score)
Q
Qiao Longfei 已提交
132
        # use score to do beam search
133
        current_score = pd.fc(input=current_state_with_lod,
Q
Qiao Longfei 已提交
134 135
                              size=target_dict_dim,
                              act='softmax')
136 137
        topk_scores, topk_indices = pd.topk(current_score, k=beam_size)
        # calculate accumulated scores after topk to reduce computation cost
138 139 140 141 142 143 144 145 146 147
        accu_scores = pd.elementwise_add(x=pd.log(topk_scores),
                                         y=pd.reshape(pre_score, shape=[-1]),
                                         axis=0)
        selected_ids, selected_scores = pd.beam_search(pre_ids,
                                                       pre_score,
                                                       topk_indices,
                                                       accu_scores,
                                                       beam_size,
                                                       end_id=10,
                                                       level=0)
Q
Qiao Longfei 已提交
148 149 150 151 152 153 154 155

        pd.increment(x=counter, value=1, in_place=True)

        # update the memories
        pd.array_write(current_state, array=state_array, i=counter)
        pd.array_write(selected_ids, array=ids_array, i=counter)
        pd.array_write(selected_scores, array=scores_array, i=counter)

156 157 158 159 160
        # update the break condition: up to the max length or all candidates of
        # source sentences have ended.
        length_cond = pd.less_than(x=counter, y=array_len)
        finish_cond = pd.logical_not(pd.is_empty(x=selected_ids))
        pd.logical_and(x=length_cond, y=finish_cond, out=cond)
Q
Qiao Longfei 已提交
161 162

    translation_ids, translation_scores = pd.beam_search_decode(
163
        ids=ids_array, scores=scores_array, beam_size=beam_size, end_id=10)
Q
Qiao Longfei 已提交
164 165 166 167 168 169

    # return init_ids, init_scores

    return translation_ids, translation_scores


武毅 已提交
170
def train_main(use_cuda, is_sparse, is_local=True):
Y
Yang Yu 已提交
171 172 173 174 175 176
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    rnn_out = decoder_train(context, is_sparse)
177 178 179 180
    label = pd.data(name="target_language_next_word",
                    shape=[1],
                    dtype='int64',
                    lod_level=1)
Q
Qiao Longfei 已提交
181
    cost = pd.cross_entropy(input=rnn_out, label=label)
Y
Yu Yang 已提交
182
    avg_cost = pd.mean(cost)
Q
Qiao Longfei 已提交
183

184 185 186 187
    optimizer = fluid.optimizer.Adagrad(
        learning_rate=1e-4,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.1))
W
Wu Yi 已提交
188
    optimizer.minimize(avg_cost)
Y
Yan Chunwei 已提交
189

190 191 192
    train_data = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.wmt14.train(dict_size), buf_size=1000),
                              batch_size=batch_size)
Y
Yan Chunwei 已提交
193

194 195 196 197
    feed_order = [
        'src_word_id', 'target_language_word', 'target_language_next_word'
    ]

Y
Yan Chunwei 已提交
198 199
    exe = Executor(place)

武毅 已提交
200 201 202
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

203 204 205 206 207
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

武毅 已提交
208
        batch_id = 0
209
        for pass_id in range(1):
武毅 已提交
210 211
            for data in train_data():
                outs = exe.run(main_program,
212
                               feed=feeder.feed(data),
武毅 已提交
213 214
                               fetch_list=[avg_cost])
                avg_cost_val = np.array(outs[0])
215 216
                print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                      " avg_cost=" + str(avg_cost_val))
武毅 已提交
217 218 219 220 221 222 223
                if batch_id > 3:
                    break
                batch_id += 1

    if is_local:
        train_loop(framework.default_main_program())
    else:
G
gongweibao 已提交
224 225
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
226 227 228 229
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
230
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
231
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
232 233
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
234
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
235
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
236 237 238 239 240 241 242 243
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yan Chunwei 已提交
244 245


Y
Yang Yu 已提交
246 247 248 249 250 251 252
def decode_main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    translation_ids, translation_scores = decoder_decode(context, is_sparse)
Q
Qiao Longfei 已提交
253 254 255 256 257

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
258 259
    init_scores_data = np.array([1. for _ in range(batch_size)],
                                dtype='float32')
Q
Qiao Longfei 已提交
260 261
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
262 263
    init_recursive_seq_lens = [1] * batch_size
    init_recursive_seq_lens = [init_recursive_seq_lens, init_recursive_seq_lens]
Q
Qiao Longfei 已提交
264

265 266 267 268
    init_ids = fluid.create_lod_tensor(init_ids_data, init_recursive_seq_lens,
                                       place)
    init_scores = fluid.create_lod_tensor(init_scores_data,
                                          init_recursive_seq_lens, place)
269

270 271 272
    train_data = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.wmt14.train(dict_size), buf_size=1000),
                              batch_size=batch_size)
Q
Qiao Longfei 已提交
273

274 275 276 277 278 279 280 281
    feed_order = ['src_word_id']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

    for data in train_data():
282
        feed_dict = feeder.feed([[x[0]] for x in data])
283 284
        feed_dict['init_ids'] = init_ids
        feed_dict['init_scores'] = init_scores
Q
Qiao Longfei 已提交
285 286 287

        result_ids, result_scores = exe.run(
            framework.default_main_program(),
288
            feed=feed_dict,
Q
Qiao Longfei 已提交
289 290
            fetch_list=[translation_ids, translation_scores],
            return_numpy=False)
291
        print(result_ids.recursive_sequence_lengths())
Q
Qiao Longfei 已提交
292 293 294
        break


Y
Yang Yu 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
class TestMachineTranslation(unittest.TestCase):
    pass


@contextlib.contextmanager
def scope_prog_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            yield


def inject_test_train(use_cuda, is_sparse):
310 311
    f_name = 'test_{0}_{1}_train'.format('cuda' if use_cuda else 'cpu',
                                         'sparse' if is_sparse else 'dense')
Y
Yang Yu 已提交
312 313 314 315 316 317 318 319 320

    def f(*args):
        with scope_prog_guard():
            train_main(use_cuda, is_sparse)

    setattr(TestMachineTranslation, f_name, f)


def inject_test_decode(use_cuda, is_sparse, decorator=None):
321 322
    f_name = 'test_{0}_{1}_decode'.format('cuda' if use_cuda else 'cpu',
                                          'sparse' if is_sparse else 'dense')
Y
Yang Yu 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

    def f(*args):
        with scope_prog_guard():
            decode_main(use_cuda, is_sparse)

    if decorator is not None:
        f = decorator(f)

    setattr(TestMachineTranslation, f_name, f)


for _use_cuda_ in (False, True):
    for _is_sparse_ in (False, True):
        inject_test_train(_use_cuda_, _is_sparse_)

for _use_cuda_ in (False, True):
    for _is_sparse_ in (False, True):

        _decorator_ = None
        if _use_cuda_:
            _decorator_ = unittest.skip(
                reason='Beam Search does not support CUDA!')

346 347 348
        inject_test_decode(is_sparse=_is_sparse_,
                           use_cuda=_use_cuda_,
                           decorator=_decorator_)
Y
Yang Yu 已提交
349

Y
Yan Chunwei 已提交
350
if __name__ == '__main__':
Y
Yang Yu 已提交
351
    unittest.main()