dataset.py 41.2 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianshuo78520a 已提交
14
"""This is definition of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
19
from ..utils import deprecated
20

D
dongdaxiang 已提交
21
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
22 23 24


class DatasetFactory(object):
25 26
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
27
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
28 29 30
    the default is "QueueDataset".

    Example:
31 32 33 34 35
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

36
    """
D
dongdaxiang 已提交
37

D
dongdaxiang 已提交
38
    def __init__(self):
39
        """ Init. """
D
dongdaxiang 已提交
40 41
        pass

42
    def create_dataset(self, datafeed_class="QueueDataset"):
43
        """
H
hutuxian 已提交
44
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
45
        the default is "QueueDataset".
D
dongdaxiang 已提交
46

47 48 49 50
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
51
        Examples:
52 53 54 55 56
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

57
        """
D
dongdaxiang 已提交
58 59
        try:
            dataset = globals()[datafeed_class]()
60
            return dataset
D
dongdaxiang 已提交
61 62 63 64 65 66
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
67
    """ Base dataset class. """
D
dongdaxiang 已提交
68

D
dongdaxiang 已提交
69
    def __init__(self):
70
        """ Init. """
D
dongdaxiang 已提交
71 72 73 74
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
75
        self.dataset = core.Dataset("MultiSlotDataset")
76
        self.thread_num = 1
J
jiaqi 已提交
77
        self.filelist = []
78
        self.use_ps_gpu = False
79
        self.psgpu = None
D
dongdaxiang 已提交
80 81 82 83 84 85

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

86 87 88 89 90 91
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
92 93

        Args:
94
            pipe_command(str): pipe command
95

D
dongdaxiang 已提交
96 97 98
        """
        self.proto_desc.pipe_command = pipe_command

T
Thunderbrook 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    def set_so_parser_name(self, so_parser_name):
        """
        Set so parser name of current dataset

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_so_parser_name("./abc.so")

        Args:
            pipe_command(str): pipe command

        """
        self.proto_desc.so_parser_name = so_parser_name

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

133 134 135 136 137 138 139 140
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
T
tianshuo78520a 已提交
141
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
178 179 180 181
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

182 183 184 185 186 187
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
188 189

        Args:
190
            batch_size(int): batch size
D
dongdaxiang 已提交
191 192 193 194

        """
        self.proto_desc.batch_size = batch_size

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    def set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pv_batch(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

211
    def set_thread(self, thread_num):
212 213 214
        """
        Set thread num, it is the num of readers.

215 216 217 218 219 220
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
221 222

        Args:
223
            thread_num(int): thread num
224
        """
225
        self.dataset.set_thread_num(thread_num)
226
        self.thread_num = thread_num
227 228

    def set_filelist(self, filelist):
229 230 231
        """
        Set file list in current worker.

232 233 234 235 236 237
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
238 239

        Args:
240
            filelist(list): file list
241
        """
242
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
243
        self.filelist = filelist
244

245 246 247
    def set_input_type(self, input_type):
        self.proto_desc.input_type = input_type

D
dongdaxiang 已提交
248
    def set_use_var(self, var_list):
249 250 251
        """
        Set Variables which you will use.

252 253 254 255 256 257
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
258 259

        Args:
260
            var_list(list): variable list
261
        """
262
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
263
        for var in var_list:
264
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
265 266 267 268
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
269
                slot_var.shape.extend(var.shape)
270
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
271
                slot_var.type = "float"
272
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
273
                slot_var.type = "uint64"
B
Baibaifan 已提交
274 275
            elif var.dtype == core.VarDesc.VarType.INT32:
                slot_var.type = "uint32"
D
dongdaxiang 已提交
276 277
            else:
                raise ValueError(
B
Baibaifan 已提交
278
                    "Currently, fluid.dataset only supports dtype=float32, dtype=int32 and dtype=int64"
D
dongdaxiang 已提交
279 280
                )

281
    def set_hdfs_config(self, fs_name, fs_ugi):
282 283 284
        """
        Set hdfs config: fs name ad ugi

285 286 287 288 289 290
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
291 292

        Args:
293 294
            fs_name(str): fs name
            fs_ugi(str): fs ugi
295
        """
296 297
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    def set_download_cmd(self, download_cmd):
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_download_cmd("./read_from_afs")

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

314
    def _prepare_to_run(self):
315 316 317 318
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
319 320 321
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
322
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
323 324
        self.dataset.create_readers()

T
Thunderbrook 已提交
325
    def _set_use_ps_gpu(self, psgpu):
326 327 328 329 330 331
        """
        set use_ps_gpu flag

        Args:
            use_ps_gpu: bool
        """
T
Thunderbrook 已提交
332
        self.use_ps_gpu = True
333 334
        # if not defined heterps with paddle, users will not use psgpu
        if not core._is_compiled_with_heterps():
T
Thunderbrook 已提交
335
            self.use_ps_gpu = False
336
        elif self.use_ps_gpu:
T
Thunderbrook 已提交
337
            self.psgpu = psgpu
338

J
jiaqi 已提交
339 340
    def _finish_to_run(self):
        self.dataset.destroy_readers()
341

D
dongdaxiang 已提交
342 343 344 345
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

346 347 348 349 350 351
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
352 353 354 355 356 357

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

358 359 360 361 362 363
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

D
dongdaxiang 已提交
364 365

class InMemoryDataset(DatasetBase):
366 367
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
368 369
    and shuffle data before training.
    This class should be created by DatasetFactory
370 371

    Example:
372
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
373
    """
D
dongdaxiang 已提交
374

375
    @deprecated(since="2.0.0", update_to="paddle.distributed.InMemoryDataset")
D
dongdaxiang 已提交
376
    def __init__(self):
377
        """ Init. """
378 379
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
380
        self.fleet_send_batch_size = None
381
        self.is_user_set_queue_num = False
J
jiaqi 已提交
382
        self.queue_num = None
383 384
        self.parse_ins_id = False
        self.parse_content = False
385 386 387
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
388
        self.merge_by_lineid = False
389
        self.fleet_send_sleep_seconds = None
390
        self.trainer_num = -1
J
jiaqi 已提交
391

392 393
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.InMemoryDataset._set_feed_type")
394 395 396 397 398
    def set_feed_type(self, data_feed_type):
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type
Y
yaoxuefeng 已提交
399 400
        if (self.proto_desc.name == "SlotRecordInMemoryDataFeed"):
            self.dataset = core.Dataset("SlotRecordDataset")
401

402 403
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.InMemoryDataset._prepare_to_run")
J
jiaqi 已提交
404 405 406 407 408
    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
409
        if self.thread_num <= 0:
410
            self.thread_num = 1
J
jiaqi 已提交
411 412 413 414
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
415 416
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
417 418 419
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
J
jiaqi 已提交
420 421 422 423
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

424 425
    @deprecated(
        since="2.0.0",
426 427
        update_to=
        "paddle.distributed.InMemoryDataset._dynamic_adjust_before_train")
428 429
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
430 431 432 433
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(thread_num, False)
434 435
        self.dataset.dynamic_adjust_readers_num(thread_num)

436 437 438 439
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_after_train"
    )
440 441
    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
442 443 444 445
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
446 447
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

448 449
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.InMemoryDataset._set_queue_num")
J
jiaqi 已提交
450 451 452 453 454
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
455
            queue_num(int): dataset output queue num
J
jiaqi 已提交
456 457 458 459 460 461 462 463 464

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
465
        self.is_user_set_queue_num = True
J
jiaqi 已提交
466 467
        self.queue_num = queue_num

468 469 470
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.InMemoryDataset._set_parse_ins_id"
                )
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

488 489 490
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_content")
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    def set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    def _set_trainer_num(self, trainer_num):
        """
        Set trainer num

        Args:
            trainer_num(int): trainer num

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset._set_trainer_num(1)

        """
        self.trainer_num = trainer_num

542 543 544
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.InMemoryDataset._set_merge_by_sid"
                )
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    def set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()

634 635 636 637
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_batch_size"
    )
638
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
639
        """
640
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
654

655 656
    @deprecated(
        since="2.0.0",
657 658
        update_to=
        "paddle.distributed.InMemoryDataset._set_fleet_send_sleep_seconds")
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

676 677 678
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_lineid")
679
    def set_merge_by_lineid(self, merge_size=2):
680 681 682 683 684
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
685
            merge_size(int): ins size to merge. default is 2.
686 687 688 689 690 691 692 693 694

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
695
        self.dataset.set_merge_by_lineid(merge_size)
696
        self.merge_by_lineid = True
697
        self.parse_ins_id = True
698

699 700
    @deprecated(
        since="2.0.0",
701 702
        update_to=
        "paddle.distributed.InMemoryDataset._set_generate_unique_feasigns")
703 704 705 706 707
    def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

708 709
    @deprecated(
        since="2.0.0",
710 711
        update_to=
        "paddle.distributed.InMemoryDataset._generate_local_tables_unlock")
712 713
    def generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                     consume_thread_num, shard_num):
714 715 716
        self.dataset.generate_local_tables_unlock(table_id, fea_dim,
                                                  read_thread_num,
                                                  consume_thread_num, shard_num)
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
    def set_date(self, date):
        """
        :api_attr: Static Graph

        Set training date for pull sparse parameters, saving and loading model. Only used in psgpu

        Args:
            date(str): training date(format : YYMMDD). eg.20211111

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
                dataset.set_date("20211111")
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        if self.use_ps_gpu and core._is_compiled_with_heterps():
            self.psgpu.set_date(year, month, day)

741 742
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.InMemoryDataset.load_into_memory")
743
    def load_into_memory(self, is_shuffle=False):
744 745 746
        """
        Load data into memory

747 748 749
         Args:
            is_shuffle(bool): whether to use local shuffle, default is False

750 751 752
        Examples:
            .. code-block:: python

753
              # required: skiptest
754 755 756 757 758
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
759
        """
760
        self._prepare_to_run()
761 762 763 764 765
        if not self.use_ps_gpu:
            self.dataset.load_into_memory()
        elif core._is_compiled_with_heterps():
            self.psgpu.set_dataset(self.dataset)
            self.psgpu.load_into_memory(is_shuffle)
D
dongdaxiang 已提交
766

767 768 769
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.preload_into_memory")
770
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
771 772 773
        """
        Load data into memory in async mode

774 775 776
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
777 778 779
        Examples:
            .. code-block:: python

780
              # required: skiptest
J
jiaqi 已提交
781 782 783 784 785 786 787 788
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
789 790 791 792
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
793 794
        self.dataset.preload_into_memory()

795 796 797
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.InMemoryDataset.wait_preload_done"
                )
J
jiaqi 已提交
798 799 800 801 802 803 804
    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

805
              # required: skiptest
J
jiaqi 已提交
806 807 808 809 810 811 812 813
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
814
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
815

816 817
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.InMemoryDataset.local_shuffle")
D
dongdaxiang 已提交
818
    def local_shuffle(self):
819 820 821
        """
        Local shuffle

822 823 824
        Examples:
            .. code-block:: python

825
              # required: skiptest
826 827 828 829 830 831
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
832
        """
833
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
834

835 836
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.InMemoryDataset.global_shuffle")
837
    def global_shuffle(self, fleet=None, thread_num=12):
838 839
        """
        Global shuffle.
840 841 842
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
843

844
        Examples:
845 846
            .. code-block:: python

847
              # required: skiptest
848 849 850 851 852 853 854
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
855 856

        Args:
857
            fleet(Fleet): fleet singleton. Default None.
858
            thread_num(int): shuffle thread num. Default is 12.
859

860
        """
861
        if fleet is not None:
862 863
            if hasattr(fleet, "barrier_worker"):
                print("pscore fleet")
864 865 866
                fleet.barrier_worker()
            else:
                fleet._role_maker.barrier_worker()
867 868
            if self.trainer_num == -1:
                self.trainer_num = fleet.worker_num()
869
        if self.fleet_send_batch_size is None:
870 871 872
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
873
        self.dataset.register_client2client_msg_handler()
874
        self.dataset.set_trainer_num(self.trainer_num)
J
jiaqi 已提交
875
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
876
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
877
        if fleet is not None:
878
            if hasattr(fleet, "barrier_worker"):
879 880 881
                fleet.barrier_worker()
            else:
                fleet._role_maker.barrier_worker()
882
        self.dataset.global_shuffle(thread_num)
883
        if fleet is not None:
884
            if hasattr(fleet, "barrier_worker"):
885 886 887
                fleet.barrier_worker()
            else:
                fleet._role_maker.barrier_worker()
888 889 890
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
891
            if hasattr(fleet, "barrier_worker"):
892 893 894
                fleet.barrier_worker()
            else:
                fleet._role_maker.barrier_worker()
D
dongdaxiang 已提交
895

896 897
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.InMemoryDataset.release_memory")
898 899
    def release_memory(self):
        """
900 901
        :api_attr: Static Graph
        
902 903
        Release InMemoryDataset memory data, when data will not be used again.

904 905 906
        Examples:
            .. code-block:: python

907
              # required: skiptest
908 909 910 911 912 913 914 915 916 917 918 919
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

920 921
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
922

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

947 948 949
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_memory_data_size")
950 951 952 953 954 955 956 957 958 959 960 961 962 963
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

964 965 966
        Examples:
            .. code-block:: python

967
              # required: skiptest
968 969 970 971 972 973 974
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
975 976 977 978 979 980 981

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
982 983
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
984 985 986
            return global_data_size[0]
        return local_data_size[0]

987 988 989
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_shuffle_data_size")
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

1005 1006 1007
        Examples:
            .. code-block:: python

1008
              # required: skiptest
1009 1010 1011 1012 1013 1014 1015 1016
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
1017 1018 1019 1020 1021

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
1022
        print('global shuffle local_data_size: ', local_data_size)
1023 1024
        if fleet is not None:
            global_data_size = local_data_size * 0
1025
            if hasattr(fleet, "util"):
1026 1027 1028 1029
                global_data_size = fleet.util.all_reduce(local_data_size)
            else:
                fleet._role_maker.all_reduce_worker(local_data_size,
                                                    global_data_size)
1030 1031 1032
            return global_data_size[0]
        return local_data_size[0]

Y
yaoxuefeng 已提交
1033 1034 1035 1036 1037 1038 1039
    def _set_heter_ps(self, enable_heter_ps=False):
        """
        Set heter ps mode
        user no need to call this function.
        """
        self.dataset.set_heter_ps(enable_heter_ps)

X
xjqbest 已提交
1040

D
dongdaxiang 已提交
1041
class QueueDataset(DatasetBase):
1042 1043 1044
    """
    QueueDataset, it will process data streamly.

1045 1046 1047 1048 1049 1050
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

1051
    """
D
dongdaxiang 已提交
1052

D
dongdaxiang 已提交
1053
    def __init__(self):
1054
        """
D
dongdaxiang 已提交
1055 1056
        Initialize QueueDataset
        This class should be created by DatasetFactory
1057
        """
1058
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
1059
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
1060

1061 1062
    @deprecated(since="2.0.0",
                update_to="paddle.distributed.QueueDataset._prepare_to_run")
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
1077
    def local_shuffle(self):
1078
        """
1079
        Local shuffle data.
D
dongdaxiang 已提交
1080

D
dongdaxiang 已提交
1081 1082
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1083 1084 1085 1086 1087 1088 1089 1090

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

1091 1092 1093
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

1094
        """
D
dongdaxiang 已提交
1095 1096 1097
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
1098

1099
    def global_shuffle(self, fleet=None):
1100
        """
1101 1102
        Global shuffle data.

D
dongdaxiang 已提交
1103 1104
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1105

1106 1107 1108
        Args:
            fleet(Fleet): fleet singleton. Default None.

1109 1110 1111 1112 1113 1114 1115 1116
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

1117 1118 1119
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

1120
        """
D
dongdaxiang 已提交
1121 1122 1123
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1124 1125 1126 1127 1128


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
1129 1130 1131 1132 1133 1134

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
1135 1136 1137 1138
    """

    def __init__(self):
        """
1139 1140
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1141 1142 1143 1144 1145 1146
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
1147 1148
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
1149 1150 1151 1152 1153 1154 1155 1156
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
1157
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
1158 1159 1160 1161
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
H
hutuxian 已提交
1172
          dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
1173 1174 1175 1176
    """

    def __init__(self):
        """
1177 1178
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1179 1180 1181
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
1182
        self.proto_desc.name = "PaddleBoxDataFeed"
H
hutuxian 已提交
1183

H
hutuxian 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

H
hutuxian 已提交
1193 1194
    def begin_pass(self):
        """
1195
        Begin Pass
H
hutuxian 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              dataset.begin_pass()
        """
H
hutuxian 已提交
1205 1206
        self.boxps.begin_pass()

1207
    def end_pass(self, need_save_delta):
H
hutuxian 已提交
1208
        """
1209
        End Pass
H
hutuxian 已提交
1210 1211 1212 1213 1214 1215
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
1216
              dataset.end_pass(True)
H
hutuxian 已提交
1217
        """
1218
        self.boxps.end_pass(need_save_delta)
H
hutuxian 已提交
1219 1220 1221

    def wait_preload_done(self):
        """
T
tianshuo78520a 已提交
1222
        Wait async preload done
1223
        Wait Until Feed Pass Done
H
hutuxian 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
H
hutuxian 已提交
1234 1235 1236 1237
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
H
hutuxian 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
H
hutuxian 已提交
1248 1249 1250 1251 1252
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
H
hutuxian 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
H
hutuxian 已提交
1263 1264
        self._prepare_to_run()
        self.boxps.preload_into_memory()
H
hutuxian 已提交
1265 1266 1267 1268 1269

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)
1270 1271 1272

    def _dynamic_adjust_after_train(self):
        pass
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)