dist_matmul.py 84.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import copy
Z
zhaoyingli 已提交
16
from .common import infer_shape
17
from .common import DistributedOperatorImplContainer
18
from .common import DistributedOperatorImpl
19
from .common import register_distributed_operator_impl_container
20
from .common import register_distributed_operator_impl
J
JZ-LIANG 已提交
21
from .common import set_comm_op_dist_attr_for_program, naive_copy_op_dist_attr_for_program, is_parameter_related
22 23 24 25 26 27
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
28
from ..utils import set_dist_op_desc_original_id
29
from ..dist_attribute import OperatorDistributedAttribute
30
from paddle.fluid import core, unique_name
J
Jiabin Yang 已提交
31
from paddle.fluid.framework import _non_static_mode
32 33
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
34
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
35
from ..process_group import new_process_group
36
from ..utils import _get_comm_group, _get_corresponding_rank
37
from .dist_default import DistributedDefaultImpl0
38 39


40
def copy_op_with_new_input_output(ctx, block, src_op, **kwargs):
41 42
    dist_op_desc = block.desc.append_op()
    dist_op_desc.copy_from(src_op.desc)
43
    set_dist_op_desc_original_id(dist_op_desc, src_op.desc, ctx)
44 45 46 47 48 49 50 51 52 53 54
    for input_name in src_op.desc.input_names():
        assert input_name in kwargs
        dist_op_desc.set_input(input_name, kwargs[input_name])
    for output_name in src_op.desc.output_names():
        assert input_name in kwargs
        dist_op_desc.set_output(output_name, kwargs[output_name])

    block._sync_with_cpp()
    return dist_op_desc


55
def _update_dims_mapping_for_matmul(dist_op):
56
    changed = False
57 58
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
    x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
    y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
    out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

75
    # Deal with dim > 2 and take care of broadcasting
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

        compatible_dims_mapping = compute_compatible_dims_mapping([
            broadcast_x_dims_mapping, broadcast_y_dims_mapping,
            broadcast_out_dims_mapping
        ])
98 99
        if compatible_dims_mapping is None:
            return False
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

        for i in range(x_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - x_dims_mapping_len)
            if x_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                x_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(y_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - y_dims_mapping_len)
            if y_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                y_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(out_dims_mapping_len - 2):
            if out_dims_mapping[i] != compatible_dims_mapping[i]:
                out_dims_mapping[i] = compatible_dims_mapping[i]
                changed = True

118
    # The following which uses negative index can be work
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, y_dims_mapping], [-1, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, out_dims_mapping], [-2, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [y_dims_mapping, out_dims_mapping], [-1, -1])
    if dim_changed:
        changed = True

135
    # Remove unnecessary dim mapping to make sure the length of dims_mapping is same as its tensor
136 137 138 139 140 141 142 143 144 145 146 147
    if x_dims_mapping_len == 1:
        x_dims_mapping.pop(0)
    if y_dims_mapping_len == 1:
        y_dims_mapping.pop(1)

    assert len(x_dims_mapping) == x_dims_mapping_len
    assert len(y_dims_mapping) == y_dims_mapping_len
    assert len(out_dims_mapping) == out_dims_mapping_len

    return changed


148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
def _is_auto_compatible_for_matmul(dist_op):
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
    # Deep copy these dims_mappings for keeping them unchanged.
    x_dims_mapping = copy.deepcopy(op_dist_attr.get_input_dims_mapping(x_name))
    y_dims_mapping = copy.deepcopy(op_dist_attr.get_input_dims_mapping(y_name))
    out_dims_mapping = copy.deepcopy(
        op_dist_attr.get_output_dims_mapping(out_name))
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

169 170 171
    # NOTE: Partition is not supported if matmul op has trans.
    if op_desc.type() == "matmul_v2":
        if op_desc.attr('trans_x') or op_desc.attr('trans_y'):
172 173
            if x_dims_mapping[-2:] != [-1, -1
                                       ] or y_dims_mapping[-2:] != [-1, -1]:
174 175 176
                return False
    elif op_desc.type() == "matmul":
        if op_desc.attr('transpose_X') or op_desc.attr('transpose_Y'):
177 178
            if x_dims_mapping[-2:] != [-1, -1
                                       ] or y_dims_mapping[-2:] != [-1, -1]:
179 180
                return False

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    # Deal with dim > 2 and take care of broadcasting
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

200 201
        is_same = ((broadcast_x_dims_mapping == broadcast_y_dims_mapping)
                   and (broadcast_x_dims_mapping == broadcast_out_dims_mapping))
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        if not is_same:
            return False

    # The following which uses negative index can be work
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    is_same = (x_dims_mapping[-1] == y_dims_mapping[-2])
    if not is_same:
        return False

    is_same = (x_dims_mapping[-2] == out_dims_mapping[-2])
    if not is_same:
        return False

    is_same = (y_dims_mapping[-1] == out_dims_mapping[-1])
    if not is_same:
        return False

    return True


222 223 224 225
def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):

    # by now the backward function only insert the gradient allreduce for dist op itself

226
    dist_op_context = ctx.dist_op_context
227 228 229
    main_block = dist_op_context.work_block
    backward_op = dist_op_context.cur_src_op
    rank_id = dist_op_context.rank_id
230
    dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
231 232 233 234
    assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
        str(backward_op))

    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
235 236
    if rank_id not in dist_attr.process_mesh.processes:
        rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh, rank_id)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

    assert 'Y' in kwargs, "input [{}] is not given".format('Y')
    assert 'X' in kwargs, "input [{}] is not given".format('X')
    assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out@GRAD')
    assert 'Y@GRAD' in kwargs, "output [{}] is not given".format('Y@GRAD')
    assert 'X@GRAD' in kwargs, "output [{}] is not given".format('X@GRAD')
    assert len(
        kwargs['Y']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Y'])
    assert len(
        kwargs['X']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['X'])
    assert len(
        kwargs['Out@GRAD']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Out'])
    assert len(
        kwargs['Y@GRAD']
    ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
        kwargs['Y@GRAD'])

    X_var = main_block.var(kwargs['X'][0])
261
    Y_var = main_block._var_recursive(kwargs['Y'][0])
262 263 264
    Out_grad = main_block.var(kwargs['Out@GRAD'][0])
    Y_grad = main_block.var(kwargs['Y@GRAD'][0])

J
JZ-LIANG 已提交
265 266 267
    assert not is_parameter_related(
        X_var.name, main_block
    ), "left operand(X) [{}] of dist matmul should not be parameter".format(
268 269
        X_var.name)

270 271 272
    Y_var_dim_mapping = dist_attr.get_input_dims_mapping(Y_var.name)
    process_mesh_shape = dist_attr.process_mesh.topology
    process_mesh_group = dist_attr.process_mesh.processes
273 274 275 276
    # assert len(
    #     Y_var_dim_mapping
    # ) == 2, "dist matmual only support Y operand with 2 dims now but Y({})'s dim is [{}]".format(
    #     Y_var.name, Y_var_dim_mapping)
277 278 279 280 281 282
    Y_var_partitioned = False
    for dim in Y_var_dim_mapping:
        if dim >= 0 and process_mesh_shape[dim] > 0:
            Y_var_partitioned = True
            break

J
JZ-LIANG 已提交
283
    if is_parameter_related(Y_var.name, main_block) and Y_var_partitioned:
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

        if Y_var_dim_mapping[0] >= 0:
            # row parallel: c_identity + matmul
            assert Y_var_dim_mapping[1] < 0
            parallel_axis = Y_var_dim_mapping[0]

            check_variable_and_dtype(
                Out_grad, 'tensor',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                '_c_identity')

            intermediate_var_0 = main_block.create_var(
                name=unique_name.generate_with_ignorable_key(".".join(
                    ["c_identity", 'tmp'])) + "@GRAD",
                dtype=Out_grad.dtype,
                shape=Out_grad.shape,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=Out_grad.stop_gradient)

            # copy X_var's dist_attr to intermediate_var_0's dist_attr
            out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
            assert out_grad_dist_attr is not None
            ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                 out_grad_dist_attr)

310 311 312
            group_ranks = _get_comm_group(process_mesh_group,
                                          process_mesh_shape, parallel_axis,
                                          rank_id)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
            group = new_process_group(group_ranks)
            c_identity_op = main_block.append_op(
                type='c_identity',
                inputs={'X': [Out_grad]},
                outputs={'Out': intermediate_var_0},
                attrs={
                    'ring_id': group.id,
                    'use_calc_stream': True,
                    'use_model_parallel': True,
                    OP_ROLE_KEY: OpRole.Backward,
                })
            check_variable_and_dtype(intermediate_var_0, 'x',
                                     ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(intermediate_var_0.dtype, 'dtype',
                        ['float16', 'float32', 'float64'], 'linear')
329 330 331
            set_comm_op_dist_attr_for_program(c_identity_op,
                                              dist_attr.process_mesh,
                                              out_grad_dist_attr, ctx)
332 333 334 335

            new_kwargs = copy.deepcopy(kwargs)
            new_kwargs['Out@GRAD'] = [intermediate_var_0.name]
            matmul_op_desc = copy_op_with_new_input_output(
336
                ctx, main_block, backward_op, **new_kwargs)
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        else:
            # col parallel: matmul + allreduce
            assert Y_var_dim_mapping[0] < 0
            parallel_axis = Y_var_dim_mapping[1]
            new_kwargs = copy.deepcopy(kwargs)

            # NOTE (JZ-LIANG) should allow left operand be empty for matmul grad
            has_x_grad = len(kwargs['X@GRAD']) > 0
            if has_x_grad:
                assert len(kwargs['X@GRAD']) == 1
                X_grad = main_block.var(kwargs['X@GRAD'][0])
                intermediate_var_0 = main_block.create_var(
                    name=unique_name.generate_with_ignorable_key(".".join(
                        ["c_identity", 'tmp'])) + "@GRAD",
                    dtype=X_grad.dtype,
                    shape=X_grad.shape,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=X_grad.stop_gradient)

                X_grad_dist_attr = dist_attr.get_output_dist_attr(X_grad.name)
                assert X_grad_dist_attr is not None
                ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                     X_grad_dist_attr)
                new_kwargs['X@GRAD'] = [intermediate_var_0.name]

            matmul_op_desc = copy_op_with_new_input_output(
364
                ctx, main_block, backward_op, **new_kwargs)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

            # NOTE (JZ-LIANG) trick to skip one allreduce if left operand has not grad
            if has_x_grad:
                group_ranks = _get_comm_group(process_mesh_group,
                                              process_mesh_shape, parallel_axis,
                                              rank_id)
                group = new_process_group(group_ranks)
                c_allreduce_sum_op = main_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': [intermediate_var_0.name]},
                    outputs={'Out': kwargs['X@GRAD']},
                    attrs={
                        'ring_id': group.id,
                        'use_calc_stream': True,
                        'use_model_parallel': True,
                        OP_ROLE_KEY: OpRole.Backward
                    })
                set_comm_op_dist_attr_for_program(c_allreduce_sum_op,
                                                  dist_attr.process_mesh,
                                                  X_grad_dist_attr, ctx)
    else:
        # replicate
387 388
        matmul_op_desc = copy_op_with_new_input_output(ctx, main_block,
                                                       backward_op, **kwargs)
389 390 391 392 393 394

    main_block._sync_with_cpp()

    # check if need gradient allreduce
    need_gradient_allreduce = False

395
    process_mesh = dist_attr.process_mesh
396 397 398 399 400
    var_dim_mapping = dist_attr.get_input_dims_mapping(X_var.name)
    mesh_shape = process_mesh.topology
    batch_size_axis = var_dim_mapping[0]
    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
        need_gradient_allreduce = True
401
        group_ranks = _get_comm_group(process_mesh.processes,
402 403 404 405 406
                                      process_mesh.topology, batch_size_axis,
                                      rank_id)
        dp_degree = len(group_ranks)
        dp_group = new_process_group(group_ranks)

J
JZ-LIANG 已提交
407
    if need_gradient_allreduce and is_parameter_related(Y_var.name, main_block):
408
        Y_Grad_var = main_block.var(kwargs['Y@GRAD'][0])
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        allreduce_op = main_block.append_op(type='c_allreduce_sum',
                                            inputs={'X': [Y_Grad_var]},
                                            outputs={'Out': [Y_Grad_var]},
                                            attrs={
                                                'ring_id': dp_group.id,
                                                'use_calc_stream': True,
                                                OP_ROLE_KEY: OpRole.Backward
                                            })
        scale_op = main_block.append_op(type='scale',
                                        inputs={'X': Y_Grad_var},
                                        outputs={'Out': Y_Grad_var},
                                        attrs={
                                            'scale': 1.0 / dp_degree,
                                            OP_ROLE_KEY: OpRole.Backward
                                        })
424 425
        main_block._sync_with_cpp()

426 427 428
        dims_mapping = ctx.get_tensor_dist_attr_for_program(
            Y_Grad_var).dims_mapping
        process_mesh = dist_attr.process_mesh
429
        for op in [allreduce_op, scale_op]:
430 431
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = process_mesh
432 433
            op_attr.set_output_dims_mapping(Y_Grad_var.name, dims_mapping)
            op_attr.set_input_dims_mapping(Y_Grad_var.name, dims_mapping)
434
            ctx.set_op_dist_attr_for_program(op, op_attr)
435 436


437
def _init_param_sync(Weight_var, dist_op_context, startup_block, ctx, rank_id):
438

439 440
    if Weight_var.name in dist_op_context.already_init_sync_vars:
        return
441
    assert startup_block.has_var(Weight_var.name)
442
    dist_op_context.already_init_sync_vars.add(Weight_var.name)
443
    param = startup_block.var(Weight_var.name)
444 445 446
    param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
    process_mesh = param_dist_attr.process_mesh
    dim_mapping = param_dist_attr.dims_mapping
447 448 449 450 451

    for axis, size in enumerate(process_mesh.topology):
        if size <= 1 or axis in dim_mapping:
            pass
        else:
452
            group_ranks = _get_comm_group(process_mesh.processes,
453 454 455
                                          process_mesh.topology, axis, rank_id)
            sync_group = new_process_group(group_ranks)

456 457 458 459 460 461 462 463 464
            startup_block.append_op(type='c_broadcast',
                                    inputs={'X': param},
                                    outputs={'Out': param},
                                    attrs={
                                        'ring_id': sync_group.id,
                                        'root': 0,
                                        'use_calc_stream': True,
                                        OP_ROLE_KEY: OpRole.Forward
                                    })
465 466 467
    startup_block._sync_with_cpp()


468
class DistributedMatmul(DistributedOperatorImplContainer):
469

470 471
    def __init__(self, op_type):
        super(DistributedMatmul, self).__init__(op_type)
472 473


474
register_distributed_operator_impl_container(DistributedMatmul("matmul"))
475 476 477 478


# ColumnParallel
class DistributedMatmulImpl0(DistributedOperatorImpl):
479

480
    def __init__(self, name):
481
        super(DistributedMatmulImpl0, self).__init__(name)
482
        self._forward_implemented = True
483
        self._backward_implemented = True
484

485 486 487
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
488 489 490 491 492 493
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
494 495
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
496 497 498 499 500 501
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

502 503 504
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
505 506 507 508 509 510 511 512 513
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

514
    def is_auto_compatible(self, dist_op):
515 516
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
517
            return False
518
        if not _is_auto_compatible_for_matmul(dist_op):
519 520 521
            return False
        return True

522
    def update_dims_mapping(self, dist_op):
523
        changed = False
524
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
525 526 527 528
        if dim_changed:
            changed = True
        return changed

529 530 531 532 533 534
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

535
        dist_op_context = ctx.dist_op_context
536 537 538 539
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
540
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
541 542 543 544
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
545 546
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
547 548
                                              rank_id)

549
        # check validation of inputs / outputs
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
570
            Weight_var.name)[-1]
571 572
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
573 574
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
575 576 577 578 579 580

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

596 597 598 599 600 601 602 603
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
604 605 606
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
607 608 609 610 611 612 613 614 615 616 617 618 619 620

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
Z
zhaoyingli 已提交
621 622
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
623 624 625 626 627 628 629 630 631 632 633

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
634 635 636 637
        matmul_op = main_block.append_op(type='matmul',
                                         inputs=inputs,
                                         outputs={'Out': Out_var},
                                         attrs=attrs)
Z
zhaoyingli 已提交
638 639 640 641 642 643 644
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
645
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
664
        matmul_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        for input_varname in matmul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        input_dist_attr)
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        tensor_dist_attr)
        # output
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)
690 691

        # init param sync
692
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
693
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
694 695 696 697 698
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
699

700 701 702

# RowParallel
class DistributedMatmulImpl1(DistributedOperatorImpl):
703

704
    def __init__(self, name):
705
        super(DistributedMatmulImpl1, self).__init__(name)
706
        self._forward_implemented = True
707
        self._backward_implemented = True
708

709 710 711
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
712 713 714 715 716 717
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
718 719
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
720 721 722 723 724 725 726
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

727 728 729
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
730 731 732 733 734 735 736 737 738 739
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

740
    def is_auto_compatible(self, dist_op):
741 742
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
743
            return False
744

745
        if not _is_auto_compatible_for_matmul(dist_op):
746 747 748 749
            return False

        return True

750
    def update_dims_mapping(self, dist_op):
751
        changed = False
752
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
753 754 755 756
        if dim_changed:
            changed = True
        return changed

757 758 759 760 761 762
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

763
        dist_op_context = ctx.dist_op_context
764 765 766 767
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
768
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
769 770 771 772
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
773 774
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
775 776
                                              rank_id)

777
        # check validation of inputs / outputs
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
798
            Weight_var.name)[-2]
799 800
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
801 802
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
819 820 821 822 823 824 825 826 827

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

828
        intermediate_var_0 = main_block.create_var(
829 830
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
831 832 833 834 835 836 837
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
838 839 840
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
841

842 843 844 845
        matmul_op = main_block.append_op(type='matmul',
                                         inputs=inputs,
                                         outputs={'Out': intermediate_var_0},
                                         attrs=attrs)
Z
zhaoyingli 已提交
846 847
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
848 849 850 851 852 853 854 855 856 857

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
Z
zhaoyingli 已提交
858 859 860 861 862 863 864
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
865
        matmul_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                    input_dist_attr)
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
884
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
900 901

        # init param sync
902
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
903
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
904 905 906 907 908
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
909

910

911
# ReplicateParallel
912
class DistributedMatmulImpl2(DistributedOperatorImpl):
913

914
    def __init__(self, name):
915
        super(DistributedMatmulImpl2, self).__init__(name)
916

917 918 919
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
920 921 922 923 924 925 926
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
927 928
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
929 930 931 932
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
933 934
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
935 936 937 938
            return False

        return True

939 940 941
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
942 943 944 945 946
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
947 948
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
949 950 951 952
            return False

        return True

953
    def is_auto_compatible(self, dist_op):
954 955
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
956 957
            return False

958
        if not _is_auto_compatible_for_matmul(dist_op):
959 960 961 962
            return False

        return True

963
    def update_dims_mapping(self, dist_op):
964
        changed = False
965
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
966 967 968 969
        if dim_changed:
            changed = True
        return changed

970 971 972 973
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

974 975 976 977
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

978 979 980 981 982 983 984 985 986

register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl0("column_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl1("row_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl2("replicate_parallel"))


987
class DistributedMatmulV2(DistributedOperatorImplContainer):
988

989 990
    def __init__(self, op_type):
        super(DistributedMatmulV2, self).__init__(op_type)
991 992


993
register_distributed_operator_impl_container(DistributedMatmulV2("matmul_v2"))
994 995


996 997
# ColumnParallel
class DistributedMatmulV2Impl0(DistributedOperatorImpl):
998

999
    def __init__(self, name):
1000
        super(DistributedMatmulV2Impl0, self).__init__(name)
1001
        self._forward_implemented = True
1002
        self._backward_implemented = True
1003

1004 1005 1006
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1007 1008 1009 1010 1011 1012
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
1013 1014
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
1015 1016 1017 1018 1019 1020
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1021 1022 1023
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1024 1025 1026 1027 1028 1029 1030 1031 1032
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1033
    def is_auto_compatible(self, dist_op):
1034 1035
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1036 1037
            return False

1038
        if not _is_auto_compatible_for_matmul(dist_op):
1039 1040 1041 1042
            return False

        return True

1043
    def update_dims_mapping(self, dist_op):
1044
        changed = False
1045
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1046 1047 1048 1049
        if dim_changed:
            changed = True
        return changed

1050 1051 1052 1053 1054 1055
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1056
        dist_op_context = ctx.dist_op_context
1057 1058 1059 1060
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
1061
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1062 1063 1064 1065
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1066 1067
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1068 1069
                                              rank_id)

1070
        # check validation of inputs / outputs
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
1086
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
1087 1088 1089 1090
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
1091
            Weight_var.name)[-1]
1092 1093
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
1094 1095
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1096 1097 1098 1099 1100 1101

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

1117 1118 1119 1120 1121 1122 1123 1124
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
1125 1126 1127
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
Z
zhaoyingli 已提交
1141 1142
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
1143 1144 1145 1146 1147 1148 1149

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {'trans_x': False, 'trans_y': False}
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
1150 1151 1152 1153
        matmul_v2_op = main_block.append_op(type='matmul_v2',
                                            inputs=inputs,
                                            outputs={'Out': Out_var},
                                            attrs=attrs)
Z
zhaoyingli 已提交
1154 1155 1156 1157 1158 1159 1160
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1161
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1179
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1180 1181 1182 1183 1184 1185 1186
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
1187 1188
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, input_dist_attr)
Z
zhaoyingli 已提交
1189 1190 1191 1192
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
1193 1194
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, tensor_dist_attr)
Z
zhaoyingli 已提交
1195 1196 1197 1198 1199 1200 1201
        for output_varname in matmul_v2_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)
1202 1203

        # init param sync
1204
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1205
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1206 1207 1208 1209 1210
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1211 1212 1213 1214


# RowParallel
class DistributedMatmulV2Impl1(DistributedOperatorImpl):
1215

1216
    def __init__(self, name):
1217
        super(DistributedMatmulV2Impl1, self).__init__(name)
1218
        self._forward_implemented = True
1219
        self._backward_implemented = True
1220

1221 1222 1223
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1224 1225 1226 1227 1228 1229
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
1230 1231
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
1232 1233 1234 1235 1236 1237 1238
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1239 1240 1241
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1252
    def is_auto_compatible(self, dist_op):
1253 1254
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1255 1256
            return False

1257
        if not _is_auto_compatible_for_matmul(dist_op):
1258 1259 1260 1261
            return False

        return True

1262
    def update_dims_mapping(self, dist_op):
1263
        changed = False
1264
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1265 1266 1267 1268
        if dim_changed:
            changed = True
        return changed

1269 1270 1271 1272 1273 1274
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1275
        dist_op_context = ctx.dist_op_context
1276 1277 1278 1279
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
1280
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1281 1282 1283 1284
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1285 1286
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1287 1288
                                              rank_id)

1289
        # check validation of inputs / outputs
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
1305
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
1306 1307 1308 1309
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
1310
            Weight_var.name)[-2]
1311 1312
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
1313 1314
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {'trans_x': False, 'trans_y': False}
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

1336
        intermediate_var_0 = main_block.create_var(
1337 1338
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
1339 1340 1341 1342 1343 1344 1345
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
1346 1347 1348
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
1349

1350 1351 1352 1353
        matmul_v2_op = main_block.append_op(type='matmul_v2',
                                            inputs=inputs,
                                            outputs={'Out': intermediate_var_0},
                                            attrs=attrs)
Z
zhaoyingli 已提交
1354 1355
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
Z
zhaoyingli 已提交
1366 1367 1368 1369 1370 1371 1372
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1373
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = matmul_v2_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1392
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
1408 1409

        # init param sync
1410
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1411
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1412 1413 1414 1415 1416
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1417 1418


1419
# ReplicateParallel
1420
class DistributedMatmulV2Impl2(DistributedOperatorImpl):
1421

1422
    def __init__(self, name):
1423
        super(DistributedMatmulV2Impl2, self).__init__(name)
1424

1425 1426 1427
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1428 1429 1430 1431 1432 1433 1434
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
1435 1436
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
1437 1438 1439 1440
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
1441 1442
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
1443 1444 1445
            return False
        return True

1446 1447 1448 1449 1450
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1451 1452 1453 1454 1455
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
1456 1457
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
1458 1459 1460 1461
            return False

        return True

1462
    def is_auto_compatible(self, dist_op):
1463 1464
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1465 1466
            return False

1467
        if not _is_auto_compatible_for_matmul(dist_op):
1468 1469 1470 1471
            return False

        return True

1472
    def update_dims_mapping(self, dist_op):
1473
        changed = False
1474
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1475 1476 1477 1478
        if dim_changed:
            changed = True
        return changed

1479 1480 1481 1482
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

1483 1484 1485 1486
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

1487

1488 1489 1490 1491
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl0("column_parallel"))
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl1("row_parallel"))
1492
register_distributed_operator_impl(
1493
    "matmul_v2", DistributedMatmulV2Impl2("replicate_parallel"))
1494 1495 1496


class DistributedMul(DistributedOperatorImplContainer):
1497

1498 1499 1500 1501 1502 1503 1504 1505 1506
    def __init__(self, op_type):
        super(DistributedMul, self).__init__(op_type)


register_distributed_operator_impl_container(DistributedMul("mul"))


# ColumnParallel
class DistributedMulImpl0(DistributedOperatorImpl):
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
    def __init__(self, name):
        super(DistributedMulImpl0, self).__init__(name)
        self._forward_implemented = True
        self._backward_implemented = True

    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
1522 1523
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
                                              rank_id)

        # check validation of inputs / outputs
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[-1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        # attrs = {'trans_x': False, 'trans_y': False}
        attrs = {
            "x_num_col_dims": src_op.desc.attr("x_num_col_dims"),
            "y_num_col_dims": src_op.desc.attr("y_num_col_dims")
        }
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
1663 1664 1665 1666
        mul_op = main_block.append_op(type='mul',
                                      inputs=inputs,
                                      outputs={'Out': Out_var},
                                      attrs=attrs)
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in mul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
1700 1701
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, input_dist_attr)
1702 1703 1704 1705
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
1706 1707
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, tensor_dist_attr)
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        for output_varname in mul_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(mul_op, matmulv2_op_dist_attr)

        # init param sync
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


# RowParallel
class DistributedMulImpl1(DistributedOperatorImpl):
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    def __init__(self, name):
        super(DistributedMulImpl1, self).__init__(name)
        self._forward_implemented = True
        self._backward_implemented = True

    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
1743 1744
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
                                              rank_id)

        # check validation of inputs / outputs
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[-2]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        # attrs = {'trans_x': False, 'trans_y': False}
        attrs = {
            "x_num_col_dims": src_op.desc.attr("x_num_col_dims"),
            "y_num_col_dims": src_op.desc.attr("y_num_col_dims")
        }
        inputs = {'X': X_var, 'Y': Weight_var}

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

        intermediate_var_0 = main_block.create_var(
1854 1855
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)

1867 1868 1869 1870
        mul_op = main_block.append_op(type='mul',
                                      inputs=inputs,
                                      outputs={'Out': intermediate_var_0},
                                      attrs=attrs)
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in mul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = mul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(mul_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)

        # init param sync
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


# ReplicateParallel
class DistributedMulImpl2(DistributedOperatorImpl):
1938

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
    def __init__(self, name):
        super(DistributedMulImpl2, self).__init__(name)

    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
1952 1953
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
1954 1955 1956
            return False
        if is_dim_shard(y_dims_mapping[-1]):
            return False
1957 1958
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
            return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
1972 1973
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
            return False

        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


register_distributed_operator_impl("mul",
                                   DistributedMulImpl0("column_parallel"))
register_distributed_operator_impl("mul", DistributedMulImpl1("row_parallel"))
register_distributed_operator_impl("mul",
                                   DistributedMulImpl2("replicate_parallel"))